|
import cv2 |
|
import numpy as np |
|
import pandas as pd |
|
import pickle |
|
import mediapipe as mp |
|
|
|
from .utils import extract_important_keypoints, get_static_file_url, get_drawing_color |
|
|
|
mp_drawing = mp.solutions.drawing_utils |
|
mp_pose = mp.solutions.pose |
|
|
|
|
|
class PlankDetection: |
|
ML_MODEL_PATH = get_static_file_url("model/plank_model.pkl") |
|
INPUT_SCALER_PATH = get_static_file_url("model/plank_input_scaler.pkl") |
|
PREDICTION_PROBABILITY_THRESHOLD = 0.6 |
|
|
|
def __init__(self) -> None: |
|
self.init_important_landmarks() |
|
self.load_machine_learning_model() |
|
|
|
self.previous_stage = "unknown" |
|
self.results = [] |
|
self.has_error = False |
|
|
|
def init_important_landmarks(self) -> None: |
|
""" |
|
Determine Important landmarks for plank detection |
|
""" |
|
|
|
self.important_landmarks = [ |
|
"NOSE", |
|
"LEFT_SHOULDER", |
|
"RIGHT_SHOULDER", |
|
"LEFT_ELBOW", |
|
"RIGHT_ELBOW", |
|
"LEFT_WRIST", |
|
"RIGHT_WRIST", |
|
"LEFT_HIP", |
|
"RIGHT_HIP", |
|
"LEFT_KNEE", |
|
"RIGHT_KNEE", |
|
"LEFT_ANKLE", |
|
"RIGHT_ANKLE", |
|
"LEFT_HEEL", |
|
"RIGHT_HEEL", |
|
"LEFT_FOOT_INDEX", |
|
"RIGHT_FOOT_INDEX", |
|
] |
|
|
|
|
|
self.headers = ["label"] |
|
|
|
for lm in self.important_landmarks: |
|
self.headers += [ |
|
f"{lm.lower()}_x", |
|
f"{lm.lower()}_y", |
|
f"{lm.lower()}_z", |
|
f"{lm.lower()}_v", |
|
] |
|
|
|
def load_machine_learning_model(self) -> None: |
|
""" |
|
Load machine learning model |
|
""" |
|
if not self.ML_MODEL_PATH or not self.INPUT_SCALER_PATH: |
|
raise Exception("Cannot found plank model file or input scaler file") |
|
|
|
try: |
|
with open(self.ML_MODEL_PATH, "rb") as f: |
|
self.model = pickle.load(f) |
|
with open(self.INPUT_SCALER_PATH, "rb") as f2: |
|
self.input_scaler = pickle.load(f2) |
|
except Exception as e: |
|
raise Exception(f"Error loading model, {e}") |
|
|
|
def handle_detected_results(self, video_name: str) -> None: |
|
""" |
|
Save frame as evidence |
|
""" |
|
file_name, _ = video_name.split(".") |
|
save_folder = get_static_file_url("images") |
|
for index, error in enumerate(self.results): |
|
try: |
|
image_name = f"{file_name}_{index}.jpg" |
|
cv2.imwrite(f"{save_folder}/{file_name}_{index}.jpg", error["frame"]) |
|
self.results[index]["frame"] = image_name |
|
except Exception as e: |
|
print("ERROR cannot save frame: " + str(e)) |
|
self.results[index]["frame"] = None |
|
|
|
return self.results, self.previous_stage |
|
|
|
def clear_results(self) -> None: |
|
self.previous_stage = "unknown" |
|
self.results = [] |
|
self.has_error = False |
|
|
|
def detect(self, mp_results, image, timestamp) -> None: |
|
""" |
|
Make Plank Errors detection |
|
""" |
|
try: |
|
|
|
row = extract_important_keypoints(mp_results, self.important_landmarks) |
|
X = pd.DataFrame([row], columns=self.headers[1:]) |
|
X = pd.DataFrame(self.input_scaler.transform(X)) |
|
|
|
|
|
predicted_class = self.model.predict(X)[0] |
|
prediction_probability = self.model.predict_proba(X)[0] |
|
|
|
|
|
if ( |
|
predicted_class == "C" |
|
and prediction_probability[prediction_probability.argmax()] |
|
>= self.PREDICTION_PROBABILITY_THRESHOLD |
|
): |
|
current_stage = "correct" |
|
elif ( |
|
predicted_class == "L" |
|
and prediction_probability[prediction_probability.argmax()] |
|
>= self.PREDICTION_PROBABILITY_THRESHOLD |
|
): |
|
current_stage = "low back" |
|
elif ( |
|
predicted_class == "H" |
|
and prediction_probability[prediction_probability.argmax()] |
|
>= self.PREDICTION_PROBABILITY_THRESHOLD |
|
): |
|
current_stage = "high back" |
|
else: |
|
current_stage = "unknown" |
|
|
|
|
|
if current_stage in ["low back", "high back"]: |
|
|
|
if self.previous_stage == current_stage: |
|
pass |
|
|
|
elif self.previous_stage != current_stage: |
|
self.results.append( |
|
{"stage": current_stage, "frame": image, "timestamp": timestamp} |
|
) |
|
self.has_error = True |
|
else: |
|
self.has_error = False |
|
|
|
self.previous_stage = current_stage |
|
|
|
|
|
|
|
landmark_color, connection_color = get_drawing_color(self.has_error) |
|
mp_drawing.draw_landmarks( |
|
image, |
|
mp_results.pose_landmarks, |
|
mp_pose.POSE_CONNECTIONS, |
|
mp_drawing.DrawingSpec( |
|
color=landmark_color, thickness=2, circle_radius=2 |
|
), |
|
mp_drawing.DrawingSpec( |
|
color=connection_color, thickness=2, circle_radius=1 |
|
), |
|
) |
|
|
|
|
|
cv2.rectangle(image, (0, 0), (250, 60), (245, 117, 16), -1) |
|
|
|
|
|
cv2.putText( |
|
image, |
|
"PROB", |
|
(15, 12), |
|
cv2.FONT_HERSHEY_COMPLEX, |
|
0.5, |
|
(0, 0, 0), |
|
1, |
|
cv2.LINE_AA, |
|
) |
|
cv2.putText( |
|
image, |
|
str( |
|
round(prediction_probability[np.argmax(prediction_probability)], 2) |
|
), |
|
(10, 40), |
|
cv2.FONT_HERSHEY_COMPLEX, |
|
1, |
|
(255, 255, 255), |
|
2, |
|
cv2.LINE_AA, |
|
) |
|
|
|
|
|
cv2.putText( |
|
image, |
|
"CLASS", |
|
(95, 12), |
|
cv2.FONT_HERSHEY_COMPLEX, |
|
0.5, |
|
(0, 0, 0), |
|
1, |
|
cv2.LINE_AA, |
|
) |
|
cv2.putText( |
|
image, |
|
current_stage, |
|
(90, 40), |
|
cv2.FONT_HERSHEY_COMPLEX, |
|
1, |
|
(255, 255, 255), |
|
2, |
|
cv2.LINE_AA, |
|
) |
|
|
|
except Exception as e: |
|
raise Exception(f"Error while detecting plank errors: {e}") |
|
|