pose / web /server /detection /bicep_curl.py
amitesh11's picture
Upload 3019 files
369fac9 verified
raw
history blame
19.4 kB
import mediapipe as mp
import cv2
import numpy as np
import pandas as pd
import pickle
import traceback
from .utils import (
calculate_angle,
extract_important_keypoints,
get_static_file_url,
get_drawing_color,
)
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
class BicepPoseAnalysis:
def __init__(
self,
side: str,
stage_down_threshold: float,
stage_up_threshold: float,
peak_contraction_threshold: float,
loose_upper_arm_angle_threshold: float,
visibility_threshold: float,
):
# Initialize thresholds
self.stage_down_threshold = stage_down_threshold
self.stage_up_threshold = stage_up_threshold
self.peak_contraction_threshold = peak_contraction_threshold
self.loose_upper_arm_angle_threshold = loose_upper_arm_angle_threshold
self.visibility_threshold = visibility_threshold
self.side = side
self.counter = 0
self.stage = "down"
self.is_visible = True
self.detected_errors = {
"LOOSE_UPPER_ARM": 0,
"PEAK_CONTRACTION": 0,
}
# Params for loose upper arm error detection
self.loose_upper_arm = False
# Params for peak contraction error detection
self.peak_contraction_angle = 1000
def get_joints(self, landmarks) -> bool:
"""
Check for joints' visibility then get joints coordinate
"""
side = self.side.upper()
# Check visibility
joints_visibility = [
landmarks[mp_pose.PoseLandmark[f"{side}_SHOULDER"].value].visibility,
landmarks[mp_pose.PoseLandmark[f"{side}_ELBOW"].value].visibility,
landmarks[mp_pose.PoseLandmark[f"{side}_WRIST"].value].visibility,
]
is_visible = all([vis > self.visibility_threshold for vis in joints_visibility])
self.is_visible = is_visible
if not is_visible:
return self.is_visible
# Get joints' coordinates
self.shoulder = [
landmarks[mp_pose.PoseLandmark[f"{side}_SHOULDER"].value].x,
landmarks[mp_pose.PoseLandmark[f"{side}_SHOULDER"].value].y,
]
self.elbow = [
landmarks[mp_pose.PoseLandmark[f"{side}_ELBOW"].value].x,
landmarks[mp_pose.PoseLandmark[f"{side}_ELBOW"].value].y,
]
self.wrist = [
landmarks[mp_pose.PoseLandmark[f"{side}_WRIST"].value].x,
landmarks[mp_pose.PoseLandmark[f"{side}_WRIST"].value].y,
]
return self.is_visible
def analyze_pose(
self,
landmarks,
frame,
results,
timestamp: int,
lean_back_error: bool = False,
):
"""Analyze angles of an arm for error detection
Args:
landmarks (): MediaPipe Pose landmarks
frame (): OpenCV frame
results (): MediaPipe Pose results
timestamp (int): timestamp of the frame
lean_back_error (bool, optional): If there is an lean back error detected, ignore the analysis. Defaults to False.
Returns:
_type_: _description_
"""
has_error = False
self.get_joints(landmarks)
# Cancel calculation if visibility is poor
if not self.is_visible:
return (None, None, has_error)
# * Calculate curl angle for counter
bicep_curl_angle = int(calculate_angle(self.shoulder, self.elbow, self.wrist))
if bicep_curl_angle > self.stage_down_threshold:
self.stage = "down"
elif bicep_curl_angle < self.stage_up_threshold and self.stage == "down":
self.stage = "up"
self.counter += 1
# * Calculate the angle between the upper arm (shoulder & joint) and the Y axis
shoulder_projection = [
self.shoulder[0],
1,
] # Represent the projection of the shoulder to the X axis
ground_upper_arm_angle = int(
calculate_angle(self.elbow, self.shoulder, shoulder_projection)
)
# Stop analysis if lean back error is occur
if lean_back_error:
return (bicep_curl_angle, ground_upper_arm_angle, has_error)
# * Evaluation for LOOSE UPPER ARM error
if ground_upper_arm_angle > self.loose_upper_arm_angle_threshold:
has_error = True
cv2.rectangle(frame, (350, 0), (600, 40), (245, 117, 16), -1)
cv2.putText(
frame,
"ARM ERROR",
(360, 12),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(0, 0, 0),
1,
cv2.LINE_AA,
)
cv2.putText(
frame,
"LOOSE UPPER ARM",
(355, 30),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(255, 255, 255),
1,
cv2.LINE_AA,
)
# Limit the saved frame
if not self.loose_upper_arm:
self.loose_upper_arm = True
self.detected_errors["LOOSE_UPPER_ARM"] += 1
results.append(
{"stage": "loose upper arm", "frame": frame, "timestamp": timestamp}
)
else:
self.loose_upper_arm = False
# * Evaluate PEAK CONTRACTION error
if self.stage == "up" and bicep_curl_angle < self.peak_contraction_angle:
# Save peaked contraction every rep
self.peak_contraction_angle = bicep_curl_angle
elif self.stage == "down":
# * Evaluate if the peak is higher than the threshold if True, marked as an error then saved that frame
if (
self.peak_contraction_angle != 1000
and self.peak_contraction_angle >= self.peak_contraction_threshold
):
cv2.rectangle(frame, (350, 0), (600, 40), (245, 117, 16), -1)
cv2.putText(
frame,
"ARM ERROR",
(360, 12),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(0, 0, 0),
1,
cv2.LINE_AA,
)
cv2.putText(
frame,
"WEAK PEAK CONTRACTION",
(355, 30),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(255, 255, 255),
1,
cv2.LINE_AA,
)
self.detected_errors["PEAK_CONTRACTION"] += 1
results.append(
{
"stage": "peak contraction",
"frame": frame,
"timestamp": timestamp,
}
)
has_error = True
# Reset params
self.peak_contraction_angle = 1000
return (bicep_curl_angle, ground_upper_arm_angle, has_error)
def get_counter(self) -> int:
return self.counter
def reset(self):
self.counter = 0
self.stage = "down"
self.is_visible = True
self.detected_errors = {
"LOOSE_UPPER_ARM": 0,
"PEAK_CONTRACTION": 0,
}
# Params for loose upper arm error detection
self.loose_upper_arm = False
# Params for peak contraction error detection
self.peak_contraction_angle = 1000
class BicepCurlDetection:
ML_MODEL_PATH = get_static_file_url("model/bicep_curl_model.pkl")
INPUT_SCALER = get_static_file_url("model/bicep_curl_input_scaler.pkl")
VISIBILITY_THRESHOLD = 0.65
# Params for counter
STAGE_UP_THRESHOLD = 100
STAGE_DOWN_THRESHOLD = 120
# Params to catch FULL RANGE OF MOTION error
PEAK_CONTRACTION_THRESHOLD = 60
# LOOSE UPPER ARM error detection
LOOSE_UPPER_ARM = False
LOOSE_UPPER_ARM_ANGLE_THRESHOLD = 40
# STANDING POSTURE error detection
POSTURE_ERROR_THRESHOLD = 0.95
def __init__(self) -> None:
self.init_important_landmarks()
self.load_machine_learning_model()
self.left_arm_analysis = BicepPoseAnalysis(
side="left",
stage_down_threshold=self.STAGE_DOWN_THRESHOLD,
stage_up_threshold=self.STAGE_UP_THRESHOLD,
peak_contraction_threshold=self.PEAK_CONTRACTION_THRESHOLD,
loose_upper_arm_angle_threshold=self.LOOSE_UPPER_ARM_ANGLE_THRESHOLD,
visibility_threshold=self.VISIBILITY_THRESHOLD,
)
self.right_arm_analysis = BicepPoseAnalysis(
side="right",
stage_down_threshold=self.STAGE_DOWN_THRESHOLD,
stage_up_threshold=self.STAGE_UP_THRESHOLD,
peak_contraction_threshold=self.PEAK_CONTRACTION_THRESHOLD,
loose_upper_arm_angle_threshold=self.LOOSE_UPPER_ARM_ANGLE_THRESHOLD,
visibility_threshold=self.VISIBILITY_THRESHOLD,
)
self.stand_posture = 0
self.previous_stand_posture = 0
self.results = []
self.has_error = False
def init_important_landmarks(self) -> None:
"""
Determine Important landmarks for plank detection
"""
self.important_landmarks = [
"NOSE",
"LEFT_SHOULDER",
"RIGHT_SHOULDER",
"RIGHT_ELBOW",
"LEFT_ELBOW",
"RIGHT_WRIST",
"LEFT_WRIST",
"LEFT_HIP",
"RIGHT_HIP",
]
# Generate all columns of the data frame
self.headers = ["label"] # Label column
for lm in self.important_landmarks:
self.headers += [
f"{lm.lower()}_x",
f"{lm.lower()}_y",
f"{lm.lower()}_z",
f"{lm.lower()}_v",
]
def load_machine_learning_model(self) -> None:
"""
Load machine learning model
"""
if not self.ML_MODEL_PATH:
raise Exception("Cannot found plank model")
try:
with open(self.ML_MODEL_PATH, "rb") as f:
self.model = pickle.load(f)
with open(self.INPUT_SCALER, "rb") as f2:
self.input_scaler = pickle.load(f2)
except Exception as e:
raise Exception(f"Error loading model, {e}")
def handle_detected_results(self, video_name: str) -> tuple:
"""
Save frame as evidence
"""
file_name, _ = video_name.split(".")
save_folder = get_static_file_url("images")
for index, error in enumerate(self.results):
try:
image_name = f"{file_name}_{index}.jpg"
cv2.imwrite(f"{save_folder}/{file_name}_{index}.jpg", error["frame"])
self.results[index]["frame"] = image_name
except Exception as e:
print("ERROR cannot save frame: " + str(e))
self.results[index]["frame"] = None
return self.results, {
"left_counter": self.left_arm_analysis.get_counter(),
"right_counter": self.right_arm_analysis.get_counter(),
}
def clear_results(self) -> None:
self.stand_posture = 0
self.previous_stand_posture = 0
self.results = []
self.has_error = False
self.right_arm_analysis.reset()
self.left_arm_analysis.reset()
def detect(
self,
mp_results,
image,
timestamp: int,
) -> None:
"""Error detection
Args:
mp_results (): MediaPipe results
image (): OpenCV image
timestamp (int): Current time of the frame
"""
self.has_error = False
try:
video_dimensions = [image.shape[1], image.shape[0]]
landmarks = mp_results.pose_landmarks.landmark
# * Model prediction for Lean-back error
# Extract keypoints from frame for the input
row = extract_important_keypoints(mp_results, self.important_landmarks)
X = pd.DataFrame(
[
row,
],
columns=self.headers[1:],
)
X = pd.DataFrame(self.input_scaler.transform(X))
# Make prediction and its probability
predicted_class = self.model.predict(X)[0]
prediction_probabilities = self.model.predict_proba(X)[0]
class_prediction_probability = round(
prediction_probabilities[np.argmax(prediction_probabilities)], 2
)
if class_prediction_probability >= self.POSTURE_ERROR_THRESHOLD:
self.stand_posture = predicted_class
# Stage management for saving results
if self.stand_posture == "L":
if self.previous_stand_posture == self.stand_posture:
pass
elif self.previous_stand_posture != self.stand_posture:
self.results.append(
{
"stage": "lean too far back",
"frame": image,
"timestamp": timestamp,
}
)
self.has_error = True
self.previous_stand_posture = self.stand_posture
# * Arms analysis for errors
# Left arm
(
left_bicep_curl_angle,
left_ground_upper_arm_angle,
left_arm_error,
) = self.left_arm_analysis.analyze_pose(
landmarks=landmarks,
frame=image,
results=self.results,
timestamp=timestamp,
lean_back_error=(self.stand_posture == "L"),
)
# Right arm
(
right_bicep_curl_angle,
right_ground_upper_arm_angle,
right_arm_error,
) = self.right_arm_analysis.analyze_pose(
landmarks=landmarks,
frame=image,
results=self.results,
timestamp=timestamp,
lean_back_error=(self.stand_posture == "L"),
)
self.has_error = (
True if (right_arm_error or left_arm_error) else self.has_error
)
# Visualization
# Draw landmarks and connections
landmark_color, connection_color = get_drawing_color(self.has_error)
mp_drawing.draw_landmarks(
image,
mp_results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(
color=landmark_color, thickness=2, circle_radius=2
),
mp_drawing.DrawingSpec(
color=connection_color, thickness=2, circle_radius=1
),
)
# Status box
cv2.rectangle(image, (0, 0), (350, 40), (245, 117, 16), -1)
# Display probability
cv2.putText(
image,
"RIGHT",
(15, 12),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(0, 0, 0),
1,
cv2.LINE_AA,
)
cv2.putText(
image,
str(self.right_arm_analysis.counter)
if self.right_arm_analysis.is_visible
else "UNK",
(10, 30),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(255, 255, 255),
1,
cv2.LINE_AA,
)
# Display Left Counter
cv2.putText(
image,
"LEFT",
(95, 12),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(0, 0, 0),
1,
cv2.LINE_AA,
)
cv2.putText(
image,
str(self.left_arm_analysis.counter)
if self.left_arm_analysis.is_visible
else "UNK",
(100, 30),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(255, 255, 255),
1,
cv2.LINE_AA,
)
# Lean back error
cv2.putText(
image,
"Lean-Too-Far-Back",
(165, 12),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(0, 0, 0),
1,
cv2.LINE_AA,
)
cv2.putText(
image,
str("ERROR" if self.stand_posture == "L" else "CORRECT")
+ f", {predicted_class}, {class_prediction_probability}",
(160, 30),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(255, 255, 255),
1,
cv2.LINE_AA,
)
# * Visualize angles
# Visualize LEFT arm calculated angles
if self.left_arm_analysis.is_visible:
cv2.putText(
image,
str(left_bicep_curl_angle),
tuple(
np.multiply(
self.left_arm_analysis.elbow, video_dimensions
).astype(int)
),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(255, 255, 255),
1,
cv2.LINE_AA,
)
cv2.putText(
image,
str(left_ground_upper_arm_angle),
tuple(
np.multiply(
self.left_arm_analysis.shoulder, video_dimensions
).astype(int)
),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(255, 255, 255),
1,
cv2.LINE_AA,
)
# Visualize RIGHT arm calculated angles
if self.right_arm_analysis.is_visible:
cv2.putText(
image,
str(right_bicep_curl_angle),
tuple(
np.multiply(
self.right_arm_analysis.elbow, video_dimensions
).astype(int)
),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(255, 255, 0),
1,
cv2.LINE_AA,
)
cv2.putText(
image,
str(right_ground_upper_arm_angle),
tuple(
np.multiply(
self.right_arm_analysis.shoulder, video_dimensions
).astype(int)
),
cv2.FONT_HERSHEY_COMPLEX,
0.5,
(255, 255, 0),
1,
cv2.LINE_AA,
)
except Exception as e:
traceback.print_exc()
raise e