amirkhanbloch commited on
Commit
f656045
Β·
verified Β·
1 Parent(s): f738768

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -57
app.py CHANGED
@@ -1,67 +1,115 @@
1
- from dotenv import load_dotenv
 
 
 
 
 
 
 
2
 
3
- load_dotenv() ## load all the environment variables
4
 
5
- import streamlit as st
6
- import os
7
- import google.generativeai as genai
8
- from PIL import Image
 
 
 
 
 
9
 
10
- genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
 
 
 
 
 
11
 
12
- ## Function to load Google Gemini Pro Vision API And get response
 
 
 
13
 
14
- def get_gemini_repsonse(input,image,prompt):
15
- model=genai.GenerativeModel('gemini-pro-vision')
16
- response=model.generate_content([input,image[0],prompt])
17
- return response.text
 
 
 
 
 
18
 
19
- def input_image_setup(uploaded_file):
20
- # Check if a file has been uploaded
21
- if uploaded_file is not None:
22
- # Read the file into bytes
23
- bytes_data = uploaded_file.getvalue()
24
 
25
- image_parts = [
26
- {
27
- "mime_type": uploaded_file.type, # Get the mime type of the uploaded file
28
- "data": bytes_data
29
- }
30
- ]
31
- return image_parts
32
- else:
33
- raise FileNotFoundError("No file uploaded")
34
-
35
- ##initialize our streamlit app
36
-
37
- st.set_page_config(page_title="Crop Disease Detection App")
38
-
39
- st.header("Gemini Crop Disease App")
40
- input=st.text_input("Input Prompt: ",key="input")
41
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
42
- image=""
43
- if uploaded_file is not None:
44
- image = Image.open(uploaded_file)
45
- st.image(image, caption="Uploaded Image.", use_column_width=True)
46
-
47
-
48
- submit=st.button("Predict Crop/Plant Health")
49
-
50
- input_prompt="""
51
- "You are an expert in computer vision and agriculture who can easily predict the disease of the plant. "
52
- "Analyze the following image and provide 6 outputs in a structured table format: "
53
- "1. Crop in the image, "
54
- "2. Whether it is infected or healthy, "
55
- "3. Type of disease (if any), "
56
- "4. How confident out of 100% whether image is healthy or infected "
57
- "5. Reason for the disease such as whether it is happening due to fungus, bacteria, insect bite, poor nutrition, etc., "
58
- "6. Precautions for it."
 
59
  """
60
 
61
- ## If submit button is clicked
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if submit:
64
- image_data=input_image_setup(uploaded_file)
65
- response=get_gemini_repsonse(input_prompt,image_data,input)
66
- st.subheader("The Response is")
67
- st.write(response)
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from PIL import Image
4
+ from tensorflow.keras import models
5
+ from tensorflow.keras.preprocessing.image import img_to_array
6
+ import matplotlib.pyplot as plt
7
+ import io
8
+ import base64
9
 
 
10
 
11
+ def inference(image, model_choice):
12
+ label_map = {'cassava-healthy': 0, 'cassava-not-healthy:bacteria blight': 1}
13
+ inverse_map = {v: k for k, v in label_map.items()}
14
+
15
+ image = Image.fromarray(image.astype('uint8'), 'RGB')
16
+ image = image.resize((64, 64))
17
+ image_arr = img_to_array(image)
18
+ image_arr /= 255
19
+ image_arr = image_arr[np.newaxis, :]
20
 
21
+ if model_choice == "Cassava Model πŸƒ":
22
+ model = models.load_model("cassava_model.keras")
23
+ else:
24
+ model = models.load_model("/content/maize_model.keras")
25
+ proba = model.predict(image_arr)
26
+ label = (proba > 0.5).squeeze().astype(int)
27
 
28
+ result = {
29
+ "label": inverse_map.get(int(label)),
30
+ "probability": float(proba.squeeze())
31
+ }
32
 
33
+ # Create visualization
34
+ fig, ax = plt.subplots(figsize=(8, 6))
35
+ ax.bar(['Healthy 🌿', 'Not Healthy πŸ‚'], [1 - result['probability'], result['probability']], color=['#2ecc71', '#e74c3c'])
36
+ ax.set_ylim(0, 1)
37
+ ax.set_ylabel('Probability')
38
+ ax.set_title('Plant Health Prediction πŸ”', fontsize=16, fontweight='bold')
39
+ ax.spines['top'].set_visible(False)
40
+ ax.spines['right'].set_visible(False)
41
+ plt.tight_layout()
42
 
43
+ # Convert plot to image
44
+ buf = io.BytesIO()
45
+ plt.savefig(buf, format='png')
46
+ buf.seek(0)
47
+ plot_image = Image.open(buf)
48
 
49
+ return result["label"], f"{result['probability']:.2%} of illness(bacteria blight)", plot_image
50
+
51
+ # Custom CSS for styling
52
+ custom_css = """
53
+ #component-0 {
54
+ max-width: 730px;
55
+ margin: auto;
56
+ padding: 1.5rem;
57
+ border-radius: 10px;
58
+ background: linear-gradient(135deg, #f6d365 0%, #fda085 100%);
59
+ box-shadow: 0 10px 20px rgba(0,0,0,0.19), 0 6px 6px rgba(0,0,0,0.23);
60
+ }
61
+ #component-1 {
62
+ border-radius: 10px;
63
+ overflow: hidden;
64
+ }
65
+ #component-5 {
66
+ border-radius: 10px;
67
+ overflow: hidden;
68
+ box-shadow: 0 4px 6px rgba(0,0,0,0.1);
69
+ }
70
+ .label {
71
+ font-size: 18px !important;
72
+ color: #2c3e50;
73
+ font-weight: bold;
74
+ }
75
+ .output-class {
76
+ font-size: 24px !important;
77
+ color: #2980b9;
78
+ font-weight: bold;
79
+ }
80
+ .output-prob {
81
+ font-size: 20px !important;
82
+ color: #16a085;
83
+ }
84
  """
85
 
86
+ # Gradio interface
87
+ with gr.Blocks(css=custom_css) as demo:
88
+ gr.Markdown("# 🌱 Crop Diseases Detector πŸ•΅οΈβ€β™‚οΈ")
89
+ gr.Markdown("Upload an image of a cassava plant and let's check its health!")
90
+
91
+ with gr.Row():
92
+ input_image = gr.Image(type="numpy", label="πŸ“Έ Upload or Capture Image")
93
+ output_image = gr.Image(type="pil", label="πŸ–ΌοΈ Health Prediction Visualization")
94
+
95
+ model_choice = gr.Dropdown(["Cassava Model πŸƒ"], label="πŸ€– Select Model", value="Cassava Model πŸƒ")
96
+
97
+ with gr.Row():
98
+ detect_btn = gr.Button("πŸ” Detect Plant Health", variant="primary")
99
+
100
+ output_label = gr.Textbox(label="🏷️ Diagnosis")
101
+ output_confidence = gr.Textbox(label="πŸ“Š Confidence")
102
+
103
+ detect_btn.click(
104
+ inference,
105
+ inputs=[input_image, model_choice],
106
+ outputs=[output_label, output_confidence, output_image]
107
+ )
108
+
109
+ gr.Markdown("## How to use:")
110
+ gr.Markdown("1. πŸ“€ Upload an image or πŸ“Έ take a picture of a cassava plant")
111
+ gr.Markdown("2. πŸ€– Select the model you want to use")
112
+ gr.Markdown("3. πŸ” Click 'Detect Plant Health' to get the results")
113
+ gr.Markdown("4. πŸ“Š View the diagnosis, confidence score, and health prediction chart")
114
 
115
+ demo.launch(debug=True)