Spaces:
Sleeping
Sleeping
amirkhanbloch
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,115 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
load_dotenv() ## load all the environment variables
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
"""
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
image_data=input_image_setup(uploaded_file)
|
65 |
-
response=get_gemini_repsonse(input_prompt,image_data,input)
|
66 |
-
st.subheader("The Response is")
|
67 |
-
st.write(response)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from tensorflow.keras import models
|
5 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import io
|
8 |
+
import base64
|
9 |
|
|
|
10 |
|
11 |
+
def inference(image, model_choice):
|
12 |
+
label_map = {'cassava-healthy': 0, 'cassava-not-healthy:bacteria blight': 1}
|
13 |
+
inverse_map = {v: k for k, v in label_map.items()}
|
14 |
+
|
15 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
16 |
+
image = image.resize((64, 64))
|
17 |
+
image_arr = img_to_array(image)
|
18 |
+
image_arr /= 255
|
19 |
+
image_arr = image_arr[np.newaxis, :]
|
20 |
|
21 |
+
if model_choice == "Cassava Model π":
|
22 |
+
model = models.load_model("cassava_model.keras")
|
23 |
+
else:
|
24 |
+
model = models.load_model("/content/maize_model.keras")
|
25 |
+
proba = model.predict(image_arr)
|
26 |
+
label = (proba > 0.5).squeeze().astype(int)
|
27 |
|
28 |
+
result = {
|
29 |
+
"label": inverse_map.get(int(label)),
|
30 |
+
"probability": float(proba.squeeze())
|
31 |
+
}
|
32 |
|
33 |
+
# Create visualization
|
34 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
35 |
+
ax.bar(['Healthy πΏ', 'Not Healthy π'], [1 - result['probability'], result['probability']], color=['#2ecc71', '#e74c3c'])
|
36 |
+
ax.set_ylim(0, 1)
|
37 |
+
ax.set_ylabel('Probability')
|
38 |
+
ax.set_title('Plant Health Prediction π', fontsize=16, fontweight='bold')
|
39 |
+
ax.spines['top'].set_visible(False)
|
40 |
+
ax.spines['right'].set_visible(False)
|
41 |
+
plt.tight_layout()
|
42 |
|
43 |
+
# Convert plot to image
|
44 |
+
buf = io.BytesIO()
|
45 |
+
plt.savefig(buf, format='png')
|
46 |
+
buf.seek(0)
|
47 |
+
plot_image = Image.open(buf)
|
48 |
|
49 |
+
return result["label"], f"{result['probability']:.2%} of illness(bacteria blight)", plot_image
|
50 |
+
|
51 |
+
# Custom CSS for styling
|
52 |
+
custom_css = """
|
53 |
+
#component-0 {
|
54 |
+
max-width: 730px;
|
55 |
+
margin: auto;
|
56 |
+
padding: 1.5rem;
|
57 |
+
border-radius: 10px;
|
58 |
+
background: linear-gradient(135deg, #f6d365 0%, #fda085 100%);
|
59 |
+
box-shadow: 0 10px 20px rgba(0,0,0,0.19), 0 6px 6px rgba(0,0,0,0.23);
|
60 |
+
}
|
61 |
+
#component-1 {
|
62 |
+
border-radius: 10px;
|
63 |
+
overflow: hidden;
|
64 |
+
}
|
65 |
+
#component-5 {
|
66 |
+
border-radius: 10px;
|
67 |
+
overflow: hidden;
|
68 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
69 |
+
}
|
70 |
+
.label {
|
71 |
+
font-size: 18px !important;
|
72 |
+
color: #2c3e50;
|
73 |
+
font-weight: bold;
|
74 |
+
}
|
75 |
+
.output-class {
|
76 |
+
font-size: 24px !important;
|
77 |
+
color: #2980b9;
|
78 |
+
font-weight: bold;
|
79 |
+
}
|
80 |
+
.output-prob {
|
81 |
+
font-size: 20px !important;
|
82 |
+
color: #16a085;
|
83 |
+
}
|
84 |
"""
|
85 |
|
86 |
+
# Gradio interface
|
87 |
+
with gr.Blocks(css=custom_css) as demo:
|
88 |
+
gr.Markdown("# π± Crop Diseases Detector π΅οΈββοΈ")
|
89 |
+
gr.Markdown("Upload an image of a cassava plant and let's check its health!")
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
input_image = gr.Image(type="numpy", label="πΈ Upload or Capture Image")
|
93 |
+
output_image = gr.Image(type="pil", label="πΌοΈ Health Prediction Visualization")
|
94 |
+
|
95 |
+
model_choice = gr.Dropdown(["Cassava Model π"], label="π€ Select Model", value="Cassava Model π")
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
detect_btn = gr.Button("π Detect Plant Health", variant="primary")
|
99 |
+
|
100 |
+
output_label = gr.Textbox(label="π·οΈ Diagnosis")
|
101 |
+
output_confidence = gr.Textbox(label="π Confidence")
|
102 |
+
|
103 |
+
detect_btn.click(
|
104 |
+
inference,
|
105 |
+
inputs=[input_image, model_choice],
|
106 |
+
outputs=[output_label, output_confidence, output_image]
|
107 |
+
)
|
108 |
+
|
109 |
+
gr.Markdown("## How to use:")
|
110 |
+
gr.Markdown("1. π€ Upload an image or πΈ take a picture of a cassava plant")
|
111 |
+
gr.Markdown("2. π€ Select the model you want to use")
|
112 |
+
gr.Markdown("3. π Click 'Detect Plant Health' to get the results")
|
113 |
+
gr.Markdown("4. π View the diagnosis, confidence score, and health prediction chart")
|
114 |
|
115 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|