Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -57,9 +57,10 @@ def process(image):
|
|
57 |
print(type(image))
|
58 |
print(image.shape)
|
59 |
orig_image = Image.fromarray(image)
|
60 |
-
return [orig_image,orig_image]
|
61 |
w,h = orig_im_size = orig_image.size
|
62 |
image = resize_image(orig_image)
|
|
|
63 |
im_np = np.array(image)
|
64 |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
|
65 |
im_tensor = torch.unsqueeze(im_tensor,0)
|
@@ -67,24 +68,25 @@ def process(image):
|
|
67 |
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
68 |
if torch.cuda.is_available():
|
69 |
im_tensor=im_tensor.cuda()
|
70 |
-
|
|
|
71 |
#inference
|
72 |
result=net(im_tensor)
|
73 |
-
|
74 |
# post process
|
75 |
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
|
76 |
ma = torch.max(result)
|
77 |
mi = torch.min(result)
|
78 |
result = (result-mi)/(ma-mi)
|
79 |
-
|
80 |
-
#
|
81 |
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
|
82 |
pil_im = Image.fromarray(np.squeeze(im_array))
|
83 |
# paste the mask on the original image
|
84 |
new_im = Image.new("RGBA", pil_im.size, (0,0,0))
|
85 |
new_im.paste(orig_image, mask=pil_im)
|
86 |
|
87 |
-
return [new_im]
|
88 |
|
89 |
|
90 |
# block = gr.Blocks().queue()
|
|
|
57 |
print(type(image))
|
58 |
print(image.shape)
|
59 |
orig_image = Image.fromarray(image)
|
60 |
+
# return [orig_image,orig_image]
|
61 |
w,h = orig_im_size = orig_image.size
|
62 |
image = resize_image(orig_image)
|
63 |
+
print("process debug1")
|
64 |
im_np = np.array(image)
|
65 |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
|
66 |
im_tensor = torch.unsqueeze(im_tensor,0)
|
|
|
68 |
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
69 |
if torch.cuda.is_available():
|
70 |
im_tensor=im_tensor.cuda()
|
71 |
+
|
72 |
+
print("process debug2")
|
73 |
#inference
|
74 |
result=net(im_tensor)
|
75 |
+
print("process debug3")
|
76 |
# post process
|
77 |
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
|
78 |
ma = torch.max(result)
|
79 |
mi = torch.min(result)
|
80 |
result = (result-mi)/(ma-mi)
|
81 |
+
print("process debug4")
|
82 |
+
# image to pil
|
83 |
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
|
84 |
pil_im = Image.fromarray(np.squeeze(im_array))
|
85 |
# paste the mask on the original image
|
86 |
new_im = Image.new("RGBA", pil_im.size, (0,0,0))
|
87 |
new_im.paste(orig_image, mask=pil_im)
|
88 |
|
89 |
+
return [orig_image, new_im]
|
90 |
|
91 |
|
92 |
# block = gr.Blocks().queue()
|