test / app.py
amir7d0's picture
Update app.py
06f834b
import streamlit as st
import numpy as np
import pandas as pd
import json
import base64
import uuid
from pandas import DataFrame
import time
import re
def download_button(object_to_download, download_filename, button_text):
if isinstance(object_to_download, bytes):
pass
elif isinstance(object_to_download, pd.DataFrame):
object_to_download = object_to_download.to_csv(index=False)
# Try JSON encode for everything else
else:
object_to_download = json.dumps(object_to_download)
try:
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
except AttributeError as e:
b64 = base64.b64encode(object_to_download).decode()
button_uuid = str(uuid.uuid4()).replace("-", "")
button_id = re.sub("\d+", "", button_uuid)
custom_css = f"""
<style>
#{button_id} {{
display: inline-flex;
align-items: center;
justify-content: center;
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
padding: .25rem .75rem;
position: relative;
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
dl_link = (
custom_css
+ f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}">{button_text}</a><br><br>'
)
# dl_link = f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}"><input type="button" kind="primary" value="{button_text}"></a><br></br>'
st.markdown(dl_link, unsafe_allow_html=True)
class c_model:
def __init__(self):
# st.write('my model')
pass
@st.cache
def load_model(self, name_or_path):
time.sleep(3)
return None
def predict(self, texts):
return np.random.randint(2), np.random.rand()
st.title('Sentiment Analysis')
# Load classification model
with st.spinner('Loading classification model...'):
from transformers import pipeline
checkpoint = "amir7d0/distilbert-base-uncased-finetuned-amazon-reviews"
classifier = pipeline("text-classification", model=checkpoint)
tab1, tab2 = st.tabs(["Single Comment", "Multiple Comment"])
with tab1:
st.subheader('Single comment classification')
text_input = st.text_area(label='Paste your text below (max 256 words)',
value='Hiiiiiiiii')
MAX_WORDS = 256
res = len(re.findall(r"\w+", text_input))
if res > MAX_WORDS:
st.warning(
"⚠️ Your text contains "
+ str(res)
+ " words."
+ " Only the first 256 words will be reviewed! 😊"
)
text_input = text_input[:MAX_WORDS]
submit_button = st.button(label='Submit comment')
if submit_button:
with st.spinner('Predicting ...'):
start_time = time.time()
time.sleep(2)
preds = classifier([text_input])[0]
end_time = time.time()
p_time = round(end_time-start_time, 2)
st.success(f'Prediction finished in {p_time}s!')
st.write(f'Label: {preds["label"]}, with certainty: {preds["score"]}')
with tab2:
st.subheader('Multiple comment classification')
file_input = st.file_uploader(label='Choose a file:', type='csv')
if file_input:
try:
df = pd.read_csv(file_input)
texts = df['text'].to_list()
except:
st.write('Bad File Error...')
st.write(f"First 5 rows of {file_input.name} texts")
st.write(texts[:5])
submit_button = st.button(label='Submit file')
if submit_button:
with st.spinner('Predicting ...'):
start_time = time.time()
time.sleep(2)
preds = classifier(texts)
end_time = time.time()
p_time = round(end_time-start_time, 2)
st.success(f'Prediction finished in {p_time}s!')
for text, pred in zip(texts, preds):
pred['text'] = text
c1, c2 = st.columns([3, 1])
with c1:
st.subheader("🎈 Check & download results")
with c2:
CSVButton2 = download_button(preds, "sentiment-analysis-preds.csv", "πŸ“₯ Download (.csv)")
st.header("")
df = pd.DataFrame(preds, columns=['text', 'label', 'score'])
import seaborn as sns
# Add styling
cmGreen = sns.light_palette("green", as_cmap=True)
cmRed = sns.light_palette("red", as_cmap=True)
df = df.style.background_gradient(
cmap=cmGreen,
subset=["score"],
)
st.table(df)