aminaj commited on
Commit
1501229
1 Parent(s): c4ade17

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -100
main.py DELETED
@@ -1,100 +0,0 @@
1
- from contextlib import asynccontextmanager
2
- from fastapi import FastAPI, HTTPException
3
- from pydantic import BaseModel, ValidationError
4
- from fastapi.encoders import jsonable_encoder
5
-
6
- # TEXT PREPROCESSING
7
- # --------------------------------------------------------------------
8
- import re
9
- import string
10
- import nltk
11
- nltk.download('punkt')
12
- nltk.download('wordnet')
13
- nltk.download('omw-1.4')
14
- from nltk.stem import WordNetLemmatizer
15
-
16
- # Function to remove URLs from text
17
- def remove_urls(text):
18
- return re.sub(r'http[s]?://\S+', '', text)
19
-
20
- # Function to remove punctuations from text
21
- def remove_punctuation(text):
22
- regular_punct = string.punctuation
23
- return str(re.sub(r'['+regular_punct+']', '', str(text)))
24
-
25
- # Function to convert the text into lower case
26
- def lower_case(text):
27
- return text.lower()
28
-
29
- # Function to lemmatize text
30
- def lemmatize(text):
31
- wordnet_lemmatizer = WordNetLemmatizer()
32
-
33
- tokens = nltk.word_tokenize(text)
34
- lemma_txt = ''
35
- for w in tokens:
36
- lemma_txt = lemma_txt + wordnet_lemmatizer.lemmatize(w) + ' '
37
-
38
- return lemma_txt
39
-
40
- def preprocess_text(text):
41
- # Preprocess the input text
42
- text = remove_urls(text)
43
- text = remove_punctuation(text)
44
- text = lower_case(text)
45
- text = lemmatize(text)
46
- return text
47
-
48
- # Load the model using FastAPI lifespan event so that teh model is loaded at the beginning for efficiency
49
- @asynccontextmanager
50
- async def lifespan(app: FastAPI):
51
- # Load the model from HuggingFace transformers library
52
- from transformers import pipeline
53
- global sentiment_task
54
- sentiment_task = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest")
55
- yield
56
- # Clean up the model and release the resources
57
- del sentiment_task
58
-
59
- # Initialize the FastAPI app
60
- app = FastAPI(lifespan=lifespan)
61
-
62
- # Define the input data model
63
- class TextInput(BaseModel):
64
- text: str
65
-
66
- # Define the welcome endpoint
67
- @app.get('/')
68
- async def welcome():
69
- return "Welcome to our Text Classification API"
70
-
71
- # Validate input text length
72
- MAX_TEXT_LENGTH = 1000
73
-
74
- # Define the sentiment analysis endpoint
75
- @app.post('/analyze/{text}')
76
- async def classify_text(text_input:TextInput):
77
- try:
78
- # Convert input data to JSON serializable dictionary
79
- text_input_dict = jsonable_encoder(text_input)
80
- # Validate input data using Pydantic model
81
- text_data = TextInput(**text_input_dict) # Convert to Pydantic model
82
-
83
- # Validate input text length
84
- if len(text_input.text) > MAX_TEXT_LENGTH:
85
- raise HTTPException(status_code=400, detail="Text length exceeds maximum allowed length")
86
- elif len(text_input.text) == 0:
87
- raise HTTPException(status_code=400, detail="Text cannot be empty")
88
- except ValidationError as e:
89
- # Handle validation error
90
- raise HTTPException(status_code=422, detail=str(e))
91
-
92
- try:
93
- # Perform text classification
94
- return sentiment_task(preprocess_text(text_input.text))
95
- except ValueError as ve:
96
- # Handle value error
97
- raise HTTPException(status_code=400, detail=str(ve))
98
- except Exception as e:
99
- # Handle other server errors
100
- raise HTTPException(status_code=500, detail=str(e))