|
import json |
|
import os |
|
from datetime import datetime, timezone |
|
|
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import HfApi, Repository |
|
from transformers import AutoConfig |
|
|
|
from content import * |
|
from elo_utils import get_elo_plots, get_elo_results_dicts |
|
from utils import get_eval_results_dicts, make_clickable_model, get_window_url_params |
|
|
|
|
|
H4_TOKEN = os.environ.get("H4_TOKEN", None) |
|
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations" |
|
HUMAN_EVAL_REPO = "HuggingFaceH4/scale-human-eval" |
|
GPT_4_EVAL_REPO = "HuggingFaceH4/open_llm_leaderboard_oai_evals" |
|
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", None)) |
|
|
|
api = HfApi() |
|
|
|
|
|
def restart_space(): |
|
api.restart_space( |
|
repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN |
|
) |
|
|
|
|
|
def get_all_requested_models(requested_models_dir): |
|
depth = 1 |
|
file_names = [] |
|
|
|
for root, dirs, files in os.walk(requested_models_dir): |
|
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) |
|
if current_depth == depth: |
|
file_names.extend([os.path.join(root, file) for file in files]) |
|
|
|
return set([file_name.lower().split("./evals/")[1] for file_name in file_names]) |
|
|
|
|
|
repo = None |
|
requested_models = None |
|
if H4_TOKEN: |
|
print("Pulling evaluation requests and results.") |
|
|
|
|
|
|
|
|
|
|
|
repo = Repository( |
|
local_dir="./evals/", |
|
clone_from=LMEH_REPO, |
|
use_auth_token=H4_TOKEN, |
|
repo_type="dataset", |
|
) |
|
repo.git_pull() |
|
|
|
requested_models_dir = "./evals/eval_requests" |
|
requested_models = get_all_requested_models(requested_models_dir) |
|
|
|
human_eval_repo = None |
|
if H4_TOKEN and not os.path.isdir("./human_evals"): |
|
print("Pulling human evaluation repo") |
|
human_eval_repo = Repository( |
|
local_dir="./human_evals/", |
|
clone_from=HUMAN_EVAL_REPO, |
|
use_auth_token=H4_TOKEN, |
|
repo_type="dataset", |
|
) |
|
human_eval_repo.git_pull() |
|
|
|
gpt_4_eval_repo = None |
|
if H4_TOKEN and not os.path.isdir("./gpt_4_evals"): |
|
print("Pulling GPT-4 evaluation repo") |
|
gpt_4_eval_repo = Repository( |
|
local_dir="./gpt_4_evals/", |
|
clone_from=GPT_4_EVAL_REPO, |
|
use_auth_token=H4_TOKEN, |
|
repo_type="dataset", |
|
) |
|
gpt_4_eval_repo.git_pull() |
|
|
|
|
|
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"] |
|
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"] |
|
|
|
|
|
def load_results(model, benchmark, metric): |
|
file_path = os.path.join("evals", model, f"{model}-eval_{benchmark}.json") |
|
if not os.path.exists(file_path): |
|
return 0.0, None |
|
|
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
accs = np.array([v[metric] for k, v in data["results"].items()]) |
|
mean_acc = np.mean(accs) |
|
return mean_acc, data["config"]["model_args"] |
|
|
|
|
|
COLS = [ |
|
"Model", |
|
"Revision", |
|
"Average ⬆️", |
|
"ARC (25-shot) ⬆️", |
|
"HellaSwag (10-shot) ⬆️", |
|
"MMLU (5-shot) ⬆️", |
|
"TruthfulQA (0-shot) ⬆️", |
|
"model_name_for_query", |
|
] |
|
TYPES = ["markdown", "str", "number", "number", "number", "number", "number", "str"] |
|
|
|
if not IS_PUBLIC: |
|
COLS.insert(2, "8bit") |
|
TYPES.insert(2, "bool") |
|
|
|
EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"] |
|
EVAL_TYPES = ["markdown", "str", "bool", "bool", "bool", "str"] |
|
|
|
BENCHMARK_COLS = [ |
|
"ARC (25-shot) ⬆️", |
|
"HellaSwag (10-shot) ⬆️", |
|
"MMLU (5-shot) ⬆️", |
|
"TruthfulQA (0-shot) ⬆️", |
|
] |
|
|
|
ELO_COLS = [ |
|
"Model", |
|
"GPT-4 (all)", |
|
"Human (all)", |
|
"Human (instruct)", |
|
"Human (code-instruct)", |
|
] |
|
ELO_TYPES = ["markdown", "number", "number", "number", "number"] |
|
ELO_SORT_COL = "GPT-4 (all)" |
|
|
|
|
|
def has_no_nan_values(df, columns): |
|
return df[columns].notna().all(axis=1) |
|
|
|
|
|
def has_nan_values(df, columns): |
|
return df[columns].isna().any(axis=1) |
|
|
|
|
|
def get_leaderboard_df(): |
|
if repo: |
|
print("Pulling evaluation results for the leaderboard.") |
|
repo.git_pull() |
|
|
|
all_data = get_eval_results_dicts(IS_PUBLIC) |
|
|
|
if not IS_PUBLIC: |
|
gpt4_values = { |
|
"Model": f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">gpt4</a>', |
|
"Revision": "tech report", |
|
"8bit": None, |
|
"Average ⬆️": 84.3, |
|
"ARC (25-shot) ⬆️": 96.3, |
|
"HellaSwag (10-shot) ⬆️": 95.3, |
|
"MMLU (5-shot) ⬆️": 86.4, |
|
"TruthfulQA (0-shot) ⬆️": 59.0, |
|
"model_name_for_query": "GPT-4", |
|
} |
|
all_data.append(gpt4_values) |
|
gpt35_values = { |
|
"Model": f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">gpt3.5</a>', |
|
"Revision": "tech report", |
|
"8bit": None, |
|
"Average ⬆️": 71.9, |
|
"ARC (25-shot) ⬆️": 85.2, |
|
"HellaSwag (10-shot) ⬆️": 85.5, |
|
"MMLU (5-shot) ⬆️": 70.0, |
|
"TruthfulQA (0-shot) ⬆️": 47.0, |
|
"model_name_for_query": "GPT-3.5", |
|
} |
|
all_data.append(gpt35_values) |
|
|
|
base_line = { |
|
"Model": "<p>Baseline</p>", |
|
"Revision": "N/A", |
|
"8bit": None, |
|
"Average ⬆️": 25.0, |
|
"ARC (25-shot) ⬆️": 25.0, |
|
"HellaSwag (10-shot) ⬆️": 25.0, |
|
"MMLU (5-shot) ⬆️": 25.0, |
|
"TruthfulQA (0-shot) ⬆️": 25.0, |
|
"model_name_for_query": "baseline", |
|
} |
|
|
|
all_data.append(base_line) |
|
|
|
df = pd.DataFrame.from_records(all_data) |
|
df = df.sort_values(by=["Average ⬆️"], ascending=False) |
|
df = df[COLS] |
|
|
|
|
|
df = df[has_no_nan_values(df, BENCHMARK_COLS)] |
|
return df |
|
|
|
|
|
def get_evaluation_queue_df(): |
|
if repo: |
|
print("Pulling changes for the evaluation queue.") |
|
repo.git_pull() |
|
|
|
entries = [ |
|
entry |
|
for entry in os.listdir("evals/eval_requests") |
|
if not entry.startswith(".") |
|
] |
|
all_evals = [] |
|
|
|
for entry in entries: |
|
if ".json" in entry: |
|
file_path = os.path.join("evals/eval_requests", entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data["# params"] = "unknown" |
|
data["model"] = make_clickable_model(data["model"]) |
|
data["revision"] = data.get("revision", "main") |
|
|
|
all_evals.append(data) |
|
else: |
|
|
|
sub_entries = [ |
|
e |
|
for e in os.listdir(f"evals/eval_requests/{entry}") |
|
if not e.startswith(".") |
|
] |
|
for sub_entry in sub_entries: |
|
file_path = os.path.join("evals/eval_requests", entry, sub_entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
|
|
data["model"] = make_clickable_model(data["model"]) |
|
all_evals.append(data) |
|
|
|
pending_list = [e for e in all_evals if e["status"] == "PENDING"] |
|
running_list = [e for e in all_evals if e["status"] == "RUNNING"] |
|
finished_list = [e for e in all_evals if e["status"] == "FINISHED"] |
|
df_pending = pd.DataFrame.from_records(pending_list) |
|
df_running = pd.DataFrame.from_records(running_list) |
|
df_finished = pd.DataFrame.from_records(finished_list) |
|
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS] |
|
|
|
|
|
def get_elo_leaderboard(df_instruct, df_code_instruct, tie_allowed=False): |
|
if human_eval_repo: |
|
print("Pulling human_eval_repo changes") |
|
human_eval_repo.git_pull() |
|
|
|
all_data = get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed) |
|
dataframe = pd.DataFrame.from_records(all_data) |
|
dataframe = dataframe.sort_values(by=ELO_SORT_COL, ascending=False) |
|
dataframe = dataframe[ELO_COLS] |
|
return dataframe |
|
|
|
|
|
def get_elo_elements(): |
|
df_instruct = pd.read_json("human_evals/without_code.json") |
|
df_code_instruct = pd.read_json("human_evals/with_code.json") |
|
|
|
elo_leaderboard = get_elo_leaderboard( |
|
df_instruct, df_code_instruct, tie_allowed=False |
|
) |
|
elo_leaderboard_with_tie_allowed = get_elo_leaderboard( |
|
df_instruct, df_code_instruct, tie_allowed=True |
|
) |
|
plot_1, plot_2, plot_3, plot_4 = get_elo_plots( |
|
df_instruct, df_code_instruct, tie_allowed=False |
|
) |
|
|
|
return ( |
|
elo_leaderboard, |
|
elo_leaderboard_with_tie_allowed, |
|
plot_1, |
|
plot_2, |
|
plot_3, |
|
plot_4, |
|
) |
|
|
|
|
|
original_df = get_leaderboard_df() |
|
leaderboard_df = original_df.copy() |
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df() |
|
( |
|
elo_leaderboard, |
|
elo_leaderboard_with_tie_allowed, |
|
plot_1, |
|
plot_2, |
|
plot_3, |
|
plot_4, |
|
) = get_elo_elements() |
|
|
|
|
|
def is_model_on_hub(model_name, revision) -> bool: |
|
try: |
|
config = AutoConfig.from_pretrained(model_name, revision=revision) |
|
return True |
|
|
|
except Exception as e: |
|
print("Could not get the model config from the hub.") |
|
print(e) |
|
return False |
|
|
|
|
|
def add_new_eval( |
|
model: str, |
|
base_model: str, |
|
revision: str, |
|
is_8_bit_eval: bool, |
|
private: bool, |
|
is_delta_weight: bool, |
|
): |
|
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
|
|
|
|
if revision == "": |
|
revision = "main" |
|
if is_delta_weight and not is_model_on_hub(base_model, revision): |
|
error_message = f'Base model "{base_model}" was not found on hub!' |
|
print(error_message) |
|
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error_message}</p>" |
|
|
|
if not is_model_on_hub(model, revision): |
|
error_message = f'Model "{model}"was not found on hub!' |
|
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error_message}</p>" |
|
|
|
print("adding new eval") |
|
|
|
eval_entry = { |
|
"model": model, |
|
"base_model": base_model, |
|
"revision": revision, |
|
"private": private, |
|
"8bit_eval": is_8_bit_eval, |
|
"is_delta_weight": is_delta_weight, |
|
"status": "PENDING", |
|
"submitted_time": current_time, |
|
} |
|
|
|
user_name = "" |
|
model_path = model |
|
if "/" in model: |
|
user_name = model.split("/")[0] |
|
model_path = model.split("/")[1] |
|
|
|
OUT_DIR = f"eval_requests/{user_name}" |
|
os.makedirs(OUT_DIR, exist_ok=True) |
|
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json" |
|
|
|
|
|
if out_path.lower() in requested_models: |
|
duplicate_request_message = "This model has been already submitted." |
|
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{duplicate_request_message}</p>" |
|
|
|
with open(out_path, "w") as f: |
|
f.write(json.dumps(eval_entry)) |
|
|
|
api.upload_file( |
|
path_or_fileobj=out_path, |
|
path_in_repo=out_path, |
|
repo_id=LMEH_REPO, |
|
token=H4_TOKEN, |
|
repo_type="dataset", |
|
) |
|
|
|
success_message = "Your request has been submitted to the evaluation queue!" |
|
return f"<p style='color: green; font-size: 20px; text-align: center;'>{success_message}</p>" |
|
|
|
|
|
def refresh(): |
|
leaderboard_df = get_leaderboard_df() |
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df() |
|
return ( |
|
leaderboard_df, |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) |
|
|
|
|
|
def search_table(df, query): |
|
filtered_df = df[df["model_name_for_query"].str.contains(query, case=False)] |
|
return filtered_df |
|
|
|
|
|
def change_tab(query_param): |
|
query_param = query_param.replace("'", '"') |
|
query_param = json.loads(query_param) |
|
|
|
if ( |
|
isinstance(query_param, dict) |
|
and "tab" in query_param |
|
and query_param["tab"] == "evaluation" |
|
): |
|
return gr.Tabs.update(selected=1) |
|
else: |
|
return gr.Tabs.update(selected=0) |
|
|
|
|
|
custom_css = """ |
|
#changelog-text { |
|
font-size: 16px !important; |
|
} |
|
|
|
#changelog-text h2 { |
|
font-size: 18px !important; |
|
} |
|
|
|
.markdown-text { |
|
font-size: 16px !important; |
|
} |
|
|
|
#models-to-add-text { |
|
font-size: 18px !important; |
|
} |
|
|
|
#citation-button span { |
|
font-size: 16px !important; |
|
} |
|
|
|
#citation-button textarea { |
|
font-size: 16px !important; |
|
} |
|
|
|
#citation-button > label > button { |
|
margin: 6px; |
|
transform: scale(1.3); |
|
} |
|
|
|
#leaderboard-table { |
|
margin-top: 15px |
|
} |
|
|
|
#search-bar-table-box > div:first-child { |
|
background: none; |
|
border: none; |
|
} |
|
|
|
#search-bar { |
|
padding: 0px; |
|
width: 30%; |
|
} |
|
|
|
/* Hides the final column */ |
|
#llm-benchmark-tab-table table td:last-child, |
|
#llm-benchmark-tab-table table th:last-child { |
|
display: none; |
|
} |
|
|
|
/* Limit the width of the first column so that names don't expand too much */ |
|
table td:first-child, |
|
table th:first-child { |
|
max-width: 400px; |
|
overflow: auto; |
|
white-space: nowrap; |
|
} |
|
|
|
.tab-buttons button { |
|
font-size: 20px; |
|
} |
|
|
|
#scale-logo { |
|
border-style: none !important; |
|
box-shadow: none; |
|
display: block; |
|
margin-left: auto; |
|
margin-right: auto; |
|
max-width: 600px; |
|
} |
|
|
|
#scale-logo .download { |
|
display: none; |
|
} |
|
""" |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
with gr.Row(): |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Accordion("📙 Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
with gr.Column(): |
|
with gr.Accordion("✨ CHANGELOG", open=False): |
|
changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("📊 LLM Benchmarks", elem_id="llm-benchmark-tab-table", id=0): |
|
with gr.Column(): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
with gr.Box(elem_id="search-bar-table-box"): |
|
search_bar = gr.Textbox( |
|
placeholder="🔍 Search your model and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=leaderboard_df, |
|
headers=COLS, |
|
datatype=TYPES, |
|
max_rows=5, |
|
elem_id="leaderboard-table", |
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=original_df, |
|
headers=COLS, |
|
datatype=TYPES, |
|
max_rows=5, |
|
visible=False, |
|
) |
|
|
|
search_bar.submit( |
|
search_table, |
|
[hidden_leaderboard_table_for_search, search_bar], |
|
leaderboard_table, |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Accordion("✅ Finished Evaluations", open=False): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
max_rows=5, |
|
) |
|
with gr.Accordion("🔄 Running Evaluation Queue", open=False): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
max_rows=5, |
|
) |
|
|
|
with gr.Accordion("⏳ Pending Evaluation Queue", open=False): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
max_rows=5, |
|
) |
|
|
|
with gr.Row(): |
|
refresh_button = gr.Button("Refresh") |
|
refresh_button.click( |
|
refresh, |
|
inputs=[], |
|
outputs=[ |
|
leaderboard_table, |
|
finished_eval_table, |
|
running_eval_table, |
|
pending_eval_table, |
|
], |
|
) |
|
with gr.Accordion("Submit a new model for evaluation"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox( |
|
label="revision", placeholder="main" |
|
) |
|
|
|
with gr.Column(): |
|
is_8bit_toggle = gr.Checkbox( |
|
False, label="8 bit eval", visible=not IS_PUBLIC |
|
) |
|
private = gr.Checkbox( |
|
False, label="Private", visible=not IS_PUBLIC |
|
) |
|
is_delta_weight = gr.Checkbox(False, label="Delta weights") |
|
base_model_name_textbox = gr.Textbox( |
|
label="base model (for delta)" |
|
) |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
is_8bit_toggle, |
|
private, |
|
is_delta_weight, |
|
], |
|
submission_result, |
|
) |
|
with gr.TabItem( |
|
"🧑⚖️ Human & GPT-4 Evaluations 🤖", elem_id="human-gpt-tab-table", id=1 |
|
): |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
gr.Markdown(HUMAN_GPT_EVAL_TEXT, elem_classes="markdown-text") |
|
with gr.Column(scale=1): |
|
gr.Image( |
|
"scale-hf-logo.png", elem_id="scale-logo", show_label=False |
|
) |
|
gr.Markdown("## No tie allowed") |
|
elo_leaderboard_table = gr.components.Dataframe( |
|
value=elo_leaderboard, |
|
headers=ELO_COLS, |
|
datatype=ELO_TYPES, |
|
max_rows=5, |
|
) |
|
|
|
gr.Markdown("## Tie allowed*") |
|
elo_leaderboard_table_with_tie_allowed = gr.components.Dataframe( |
|
value=elo_leaderboard_with_tie_allowed, |
|
headers=ELO_COLS, |
|
datatype=ELO_TYPES, |
|
max_rows=5, |
|
) |
|
|
|
gr.Markdown( |
|
"\* Results when the scores of 4 and 5 were treated as ties.", |
|
elem_classes="markdown-text", |
|
) |
|
|
|
gr.Markdown( |
|
"Let us know in [this discussion](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/65) which models we should add!", |
|
elem_id="models-to-add-text", |
|
) |
|
|
|
dummy = gr.Textbox(visible=False) |
|
demo.load( |
|
change_tab, |
|
dummy, |
|
tabs, |
|
_js=get_window_url_params, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=3600) |
|
scheduler.start() |
|
demo.queue(concurrency_count=40).launch() |
|
|