Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow import keras
|
2 |
+
|
3 |
+
keras.mixed_precision.set_global_policy("mixed_float16")
|
4 |
+
|
5 |
+
import time
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import keras_cv
|
9 |
+
|
10 |
+
from constants import css, examples, img_height, img_width, num_images_to_gen
|
11 |
+
from share_btn import community_icon_html, loading_icon_html, share_js
|
12 |
+
|
13 |
+
# Load model.
|
14 |
+
weights_path = keras.utils.get_file(
|
15 |
+
origin="https://huggingface.co/mayve/GP/blob/main/%D9%86%D8%B3%D8%AE%D8%A9%20%D9%85%D9%86%20ckpt_epoch_96.h5",
|
16 |
+
file_hash="4b4348297aa9853ff9dc4da7f52dcb240210564400f164e5155e5f4dc1866626"
|
17 |
+
)
|
18 |
+
pokemon_model = keras_cv.models.StableDiffusion(
|
19 |
+
img_width=img_width, img_height=img_height
|
20 |
+
)
|
21 |
+
pokemon_model.diffusion_model.load_weights(weights_path)
|
22 |
+
|
23 |
+
pokemon_model.diffusion_model.compile(jit_compile=True)
|
24 |
+
pokemon_model.decoder.compile(jit_compile=True)
|
25 |
+
pokemon_model.text_encoder.compile(jit_compile=True)
|
26 |
+
|
27 |
+
# Warm-up the model.
|
28 |
+
#_ = pokemon_model.text_to_image("Teddy bear", batch_size=num_images_to_gen)
|
29 |
+
|
30 |
+
|
31 |
+
def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
|
32 |
+
start_time = time.time()
|
33 |
+
# `images is an `np.ndarray`. So we convert it to a list of ndarrays.
|
34 |
+
# Each ndarray represents a generated image.
|
35 |
+
# Reference: https://gradio.app/docs/#gallery
|
36 |
+
images = pokemon_model.text_to_image(
|
37 |
+
prompt,
|
38 |
+
batch_size=num_images_to_gen,
|
39 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
40 |
+
)
|
41 |
+
end_time = time.time()
|
42 |
+
print(f"Time taken: {end_time - start_time} seconds.")
|
43 |
+
return [image for image in images]
|
44 |
+
|
45 |
+
|
46 |
+
description = "This Space demonstrates a fine-tuned Stable Diffusion model. You can use it for generating custom pokemons. To get started, either enter a prompt and pick one from the examples below. For details on the fine-tuning procedure, refer to [this repository](https://github.com/sayakpaul/stable-diffusion-keras-ft/)."
|
47 |
+
article = "This Space leverages a T4 GPU to run the predictions. We use mixed-precision to speed up the inference latency. We further use XLA to carve out maximum performance from TensorFlow."
|
48 |
+
gr.Interface(
|
49 |
+
generate_image_fn,
|
50 |
+
inputs=[
|
51 |
+
gr.Textbox(
|
52 |
+
label="Enter your prompt",
|
53 |
+
max_lines=1,
|
54 |
+
placeholder="cute Sundar Pichai creature",
|
55 |
+
),
|
56 |
+
gr.Slider(value=40, minimum=8, maximum=50, step=1),
|
57 |
+
],
|
58 |
+
outputs=[gr.outputs.Image(type="pil"),gr.outputs.Image(type="pil")],
|
59 |
+
title="Generate custom pokemons",
|
60 |
+
description=description,
|
61 |
+
article=article,
|
62 |
+
examples=[["cute Sundar Pichai creature", 40], ["Hello kitty", 40]],
|
63 |
+
allow_flagging=False,
|
64 |
+
).launch()
|