Stable-Cascade-Super-Resolution / train /train_c_controlnet.py
ameerazam08's picture
Upload folder using huggingface_hub
6a6edcb verified
import torch
import torchvision
from torch import nn, optim
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
from warmup_scheduler import GradualWarmupScheduler
import sys
import os
import wandb
from dataclasses import dataclass
from gdf import GDF, EpsilonTarget, CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight
from torchtools.transforms import SmartCrop
from modules import EfficientNetEncoder
from modules import StageC
from modules import ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
from modules import Previewer
from modules import ControlNet, ControlNetDeliverer
from modules import controlnet_filters
from train.base import DataCore, TrainingCore
from core import WarpCore
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
import functools
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from contextlib import contextmanager
class WurstCore(TrainingCore, DataCore, WarpCore):
@dataclass(frozen=True)
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
# TRAINING PARAMS
lr: float = EXPECTED_TRAIN
warmup_updates: int = EXPECTED_TRAIN
offset_noise: float = None
dtype: str = None
# MODEL VERSION
model_version: str = EXPECTED # 3.6B or 1B
clip_image_model_name: str = 'openai/clip-vit-large-patch14'
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
# CHECKPOINT PATHS
effnet_checkpoint_path: str = EXPECTED
previewer_checkpoint_path: str = EXPECTED
generator_checkpoint_path: str = None
controlnet_checkpoint_path: str = None
# controlnet settings
controlnet_blocks: list = EXPECTED
controlnet_filter: str = EXPECTED
controlnet_filter_params: dict = None
controlnet_bottleneck_mode: str = None
@dataclass(frozen=True)
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
effnet: nn.Module = EXPECTED
previewer: nn.Module = EXPECTED
controlnet: nn.Module = EXPECTED
@dataclass(frozen=True)
class Schedulers(WarpCore.Schedulers):
controlnet: any = None
@dataclass(frozen=True)
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
gdf: GDF = EXPECTED
sampling_configs: dict = EXPECTED
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
controlnet_filter: controlnet_filters.BaseFilter = EXPECTED
# @dataclass() # not frozen, means that fields are mutable. Doesn't support EXPECTED
# class Info(WarpCore.Info):
# ema_loss: float = None
@dataclass(frozen=True)
class Optimizers(TrainingCore.Optimizers, WarpCore.Optimizers):
generator: any = None
controlnet: any = EXPECTED
info: TrainingCore.Info
config: Config
def setup_extras_pre(self) -> Extras:
gdf = GDF(
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
input_scaler=VPScaler(), target=EpsilonTarget(),
noise_cond=CosineTNoiseCond(),
loss_weight=P2LossWeight(),
offset_noise=self.config.offset_noise if self.config.offset_noise is not None else 0.0
)
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}
effnet_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
)
])
clip_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
)
])
if self.config.training:
transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(self.config.image_size, interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
])
else:
transforms = None
controlnet_filter = getattr(controlnet_filters, self.config.controlnet_filter)(
self.device,
**(self.config.controlnet_filter_params if self.config.controlnet_filter_params is not None else {})
)
return self.Extras(
gdf=gdf,
sampling_configs=sampling_configs,
transforms=transforms,
effnet_preprocess=effnet_preprocess,
clip_preprocess=clip_preprocess,
controlnet_filter=controlnet_filter
)
def get_cnet(self, batch: dict, models: Models, extras: Extras, cnet_input=None, **kwargs):
images = batch['images']
with torch.no_grad():
if cnet_input is None:
cnet_input = extras.controlnet_filter(images, **kwargs)
if isinstance(cnet_input, tuple):
cnet_input, cnet_input_preview = cnet_input
else:
cnet_input_preview = cnet_input
cnet_input, cnet_input_preview = cnet_input.to(self.device), cnet_input_preview.to(self.device)
cnet = models.controlnet(cnet_input)
return cnet, cnet_input_preview
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
eval_image_embeds=False, return_fields=None):
with torch.no_grad():
conditions = super().get_conditions(
batch, models, extras, is_eval, is_unconditional,
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
)
return conditions
def setup_models(self, extras: Extras) -> Models:
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.float32
# EfficientNet encoder
effnet = EfficientNetEncoder().to(self.device)
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
effnet.eval().requires_grad_(False)
del effnet_checkpoint
# Previewer
previewer = Previewer().to(self.device)
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
previewer.eval().requires_grad_(False)
del previewer_checkpoint
@contextmanager
def dummy_context():
yield None
loading_context = dummy_context if self.config.training else init_empty_weights
with loading_context():
# Diffusion models
if self.config.model_version == '3.6B':
generator = StageC()
elif self.config.model_version == '1B':
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
else:
raise ValueError(f"Unknown model version {self.config.model_version}")
if self.config.generator_checkpoint_path is not None:
if loading_context is dummy_context:
generator.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
else:
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
generator = generator.to(dtype).to(self.device)
generator = self.load_model(generator, 'generator')
# if self.config.use_fsdp:
# fsdp_auto_wrap_policy = ModuleWrapPolicy([ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock])
# generator = FSDP(generator, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)
# CLIP encoders
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
text_model = CLIPTextModelWithProjection.from_pretrained(self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device)
# ControlNet
controlnet = ControlNet(
c_in=extras.controlnet_filter.num_channels(),
proj_blocks=self.config.controlnet_blocks,
bottleneck_mode=self.config.controlnet_bottleneck_mode
)
if self.config.controlnet_checkpoint_path is not None:
controlnet_checkpoint = load_or_fail(self.config.controlnet_checkpoint_path)
controlnet.load_state_dict(controlnet_checkpoint if 'state_dict' not in controlnet_checkpoint else controlnet_checkpoint['state_dict'])
controlnet = controlnet.to(dtype).to(self.device)
controlnet = self.load_model(controlnet, 'controlnet')
controlnet.backbone.eval().requires_grad_(True)
if self.config.use_fsdp:
fsdp_auto_wrap_policy = functools.partial(size_based_auto_wrap_policy, min_num_params=3000)
controlnet = FSDP(controlnet, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)
return self.Models(
effnet=effnet, previewer=previewer,
generator=generator, generator_ema=None,
controlnet=controlnet,
tokenizer=tokenizer, text_model=text_model, image_model=image_model
)
def setup_optimizers(self, extras: Extras, models: Models) -> Optimizers:
optimizer = optim.AdamW(models.controlnet.parameters(), lr=self.config.lr) # , eps=1e-7, betas=(0.9, 0.95))
optimizer = self.load_optimizer(optimizer, 'controlnet_optim',
fsdp_model=models.controlnet if self.config.use_fsdp else None)
return self.Optimizers(generator=None, controlnet=optimizer)
def setup_schedulers(self, extras: Extras, models: Models, optimizers: Optimizers) -> Schedulers:
scheduler = GradualWarmupScheduler(optimizers.controlnet, multiplier=1, total_epoch=self.config.warmup_updates)
scheduler.last_epoch = self.info.total_steps
return self.Schedulers(controlnet=scheduler)
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
batch = next(data.iterator)
cnet, _ = self.get_cnet(batch, models, extras)
conditions = {**self.get_conditions(batch, models, extras), 'cnet': cnet}
with torch.no_grad():
latents = self.encode_latents(batch, models, extras)
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1)
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
pred = models.generator(noised, noise_cond, **conditions)
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
loss_adjusted = (loss * loss_weight).mean() / self.config.grad_accum_steps
return loss, loss_adjusted
def backward_pass(self, update, loss, loss_adjusted, models: Models, optimizers: Optimizers,
schedulers: Schedulers):
if update:
loss_adjusted.backward()
grad_norm = nn.utils.clip_grad_norm_(models.controlnet.parameters(), 1.0)
optimizers_dict = optimizers.to_dict()
for k in optimizers_dict:
if optimizers_dict[k] is not None and k != 'training':
optimizers_dict[k].step()
schedulers_dict = schedulers.to_dict()
for k in schedulers_dict:
if k != 'training':
schedulers_dict[k].step()
for k in optimizers_dict:
if optimizers_dict[k] is not None and k != 'training':
optimizers_dict[k].zero_grad(set_to_none=True)
self.info.total_steps += 1
else:
loss_adjusted.backward()
grad_norm = torch.tensor(0.0).to(self.device)
return grad_norm
def models_to_save(self):
return ['controlnet'] # ['generator', 'generator_ema']
# LATENT ENCODING & PROCESSING ----------
def encode_latents(self, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
images = batch['images'].to(self.device)
return models.effnet(extras.effnet_preprocess(images))
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
return models.previewer(latents)
def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
models.controlnet.eval()
with torch.no_grad():
batch = next(data.iterator)
cnet, cnet_input = self.get_cnet(batch, models, extras)
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
conditions, unconditions = {**conditions, 'cnet': cnet}, {**unconditions, 'cnet': cnet}
latents = self.encode_latents(batch, models, extras)
noised, _, _, logSNR, noise_cond, _ = extras.gdf.diffuse(latents, shift=1, loss_shift=1)
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
pred = models.generator(noised, noise_cond, **conditions)
pred = extras.gdf.undiffuse(noised, logSNR, pred)[0]
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
*_, (sampled, _, _) = extras.gdf.sample(
models.generator, conditions,
latents.shape, unconditions, device=self.device, **extras.sampling_configs
)
if models.generator_ema is not None:
*_, (sampled_ema, _, _) = extras.gdf.sample(
models.generator_ema, conditions,
latents.shape, unconditions, device=self.device, **extras.sampling_configs
)
else:
sampled_ema = sampled
if self.is_main_node:
noised_images = torch.cat(
[self.decode_latents(noised[i:i + 1], batch, models, extras) for i in range(len(noised))], dim=0)
pred_images = torch.cat(
[self.decode_latents(pred[i:i + 1], batch, models, extras) for i in range(len(pred))], dim=0)
sampled_images = torch.cat(
[self.decode_latents(sampled[i:i + 1], batch, models, extras) for i in range(len(sampled))], dim=0)
sampled_images_ema = torch.cat(
[self.decode_latents(sampled_ema[i:i + 1], batch, models, extras) for i in range(len(sampled_ema))],
dim=0)
images = batch['images']
if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2):
images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic')
cnet_input = nn.functional.interpolate(cnet_input, size=noised_images.shape[-2:], mode='bicubic')
if cnet_input.size(1) == 1:
cnet_input = cnet_input.repeat(1, 3, 1, 1)
elif cnet_input.size(1) > 3:
cnet_input = cnet_input[:, :3]
collage_img = torch.cat([
torch.cat([i for i in images.cpu()], dim=-1),
torch.cat([i for i in cnet_input.cpu()], dim=-1),
torch.cat([i for i in noised_images.cpu()], dim=-1),
torch.cat([i for i in pred_images.cpu()], dim=-1),
torch.cat([i for i in sampled_images.cpu()], dim=-1),
torch.cat([i for i in sampled_images_ema.cpu()], dim=-1),
], dim=-2)
torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg')
torchvision.utils.save_image(collage_img, f'{self.config.experiment_id}_latest_output.jpg')
captions = batch['captions']
if self.config.wandb_project is not None:
log_data = [
[captions[i]] + [wandb.Image(sampled_images[i])] + [wandb.Image(sampled_images_ema[i])] + [
wandb.Image(cnet_input[i])] + [wandb.Image(images[i])] for i in range(len(images))]
log_table = wandb.Table(data=log_data,
columns=["Captions", "Sampled", "Sampled EMA", "Cnet", "Orig"])
wandb.log({"Log": log_table})
models.controlnet.train()
models.controlnet.backbone.eval()
if __name__ == '__main__':
print("Launching Script")
warpcore = WurstCore(
config_file_path=sys.argv[1] if len(sys.argv) > 1 else None,
device=torch.device(int(os.environ.get("SLURM_LOCALID")))
)
warpcore.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD
# RUN TRAINING
warpcore()