ameerazam08's picture
Update main.py
731ab1a verified
import os
import yaml
import torch
import torchvision
from tqdm import tqdm
from inference.utils import *
from train import ControlNetCore, WurstCoreB
import warnings
warnings.filterwarnings("ignore")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Upscale_CaseCade:
def __init__(self) -> None:
self.config_file = './configs/inference/controlnet_c_3b_sr.yaml'
# SETUP STAGE C
with open(self.config_file, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
self.core = ControlNetCore(config_dict=loaded_config, device=device, training=False)
# SETUP STAGE B
self.config_file_b = './configs/inference/stage_b_3b.yaml'
with open(self.config_file_b, "r", encoding="utf-8") as file:
self.config_file_b = yaml.safe_load(file)
self.core_b = WurstCoreB(config_dict=self.config_file_b, device=device, training=False)
self.extras = self.core.setup_extras_pre()
self.models = self.core.setup_models(self.extras)
self.models.generator.eval().requires_grad_(False)
print("CONTROLNET READY")
self.extras_b = self.core_b.setup_extras_pre()
self.models_b = self.core_b.setup_models(self.extras_b, skip_clip=True)
self.models_b = WurstCoreB.Models(
**{**self.models_b.to_dict(), 'tokenizer': self.models.tokenizer, 'text_model': self.models.text_model}
)
self.models_b.generator.eval().requires_grad_(False)
print("STAGE B READY")
self.caption = "a photo of image"
self.cnet_multiplier = 1.0 # 0.8 # 0.3
# Stage C Parameters
self.extras.sampling_configs['cfg'] = 1
self.extras.sampling_configs['shift'] = 2
self.extras.sampling_configs['timesteps'] = 20
self.extras.sampling_configs['t_start'] = 1.0
# Stage B Parameters
self.extras_b.sampling_configs['cfg'] = 1.1
self.extras_b.sampling_configs['shift'] = 1
self.extras_b.sampling_configs['timesteps'] = 10
self.extras_b.sampling_configs['t_start'] = 1.0
# self.models = ControlNetCore.Models(
# **{**self.models.to_dict(), 'generator': torch.compile(self.models.generator, mode="reduce-overhead", fullgraph=True)}
# )
# self.models_b = WurstCoreB.Models(
# **{**self.models_b.to_dict(), 'generator': torch.compile(self.models_b.generator, mode="reduce-overhead", fullgraph=True)}
# )
def upscale_image(self,caption,image_pil,scale_fator):
batch_size = 1
cnet_override = None
images = resize_image(image_pil).unsqueeze(0).expand(batch_size, -1, -1, -1)
batch = {'images': images}
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
effnet_latents = self.core.encode_latents(batch, self.models, self.extras)
effnet_latents_up = torch.nn.functional.interpolate(effnet_latents, scale_factor=scale_fator, mode="nearest")
cnet = self.models.controlnet(effnet_latents_up)
cnet_uncond = cnet
cnet_input = torch.nn.functional.interpolate(images, scale_factor=scale_fator, mode="nearest")
# cnet, cnet_input = self.core.get_cnet(batch, self.models, self.extras)
# cnet_uncond = cnet
height, width = int(cnet[0].size(-2)*32*4/3), int(cnet[0].size(-1)*32*4/3)
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
# PREPARE CONDITIONS
batch['captions'] = [caption] * batch_size
conditions = self.core.get_conditions(batch, self.models, self.extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
unconditions = self.core.get_conditions(batch, self.models, self.extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
conditions['cnet'] = [c.clone() * self.cnet_multiplier if c is not None else c for c in cnet]
unconditions['cnet'] = [c.clone() * self.cnet_multiplier if c is not None else c for c in cnet_uncond]
conditions_b = self.core_b.get_conditions(batch, self.models_b, self.extras_b, is_eval=True, is_unconditional=False)
unconditions_b = self.core_b.get_conditions(batch, self.models_b, self.extras_b, is_eval=True, is_unconditional=True)
# torch.manual_seed(42)
sampling_c = self.extras.gdf.sample(
self.models.generator, conditions, stage_c_latent_shape,
unconditions, device=device, **self.extras.sampling_configs,
)
for (sampled_c, _, _) in tqdm(sampling_c, total=self.extras.sampling_configs['timesteps']):
sampled_c = sampled_c
# preview_c = models.previewer(sampled_c).float()
# show_images(preview_c)
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
sampling_b = self.extras_b.gdf.sample(
self.models_b.generator, conditions_b, stage_b_latent_shape,
unconditions_b, device=device, **self.extras_b.sampling_configs
)
for (sampled_b, _, _) in tqdm(sampling_b, total=self.extras_b.sampling_configs['timesteps']):
sampled_b = sampled_b
sampled = self.models_b.stage_a.decode(sampled_b).float()
# og=show_images(batch['images'],return_images=True)
upscale=show_images(sampled,return_images=True)
return upscale