ameerazam08's picture
Update app.py
13dc11f verified
raw
history blame
2.82 kB
import gradio as gr
import torch
from PIL import Image
from src.pipeline_pe_clone import FluxPipeline
import spaces
import os
import huggingface_hub
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX2'))
# Load default image from assets as an example
default_image = Image.open("assets/1.png")
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
).to('cuda')
@spaces.GPU()
def generate_image(image, prompt, guidance_scale, num_steps, lora_name):
# Load the model
# Load and fuse base LoRA weights
# pipeline.load_lora_weights("nicolaus-huang/PhotoDoodle", weight_name="pretrain.safetensors")
# pipeline.fuse_lora()
# pipeline.unload_lora_weights()
# Load selected LoRA effect if not using the pretrained base model
pipeline.load_lora_weights("nicolaus-huang/PhotoDoodle", weight_name=f"{lora_name}.safetensors")
pipeline.fuse_lora()
height=768
width=512
# Prepare the input image
condition_image = image.resize((height, width)).convert("RGB")
# Generate the output image
result = pipeline(
prompt=prompt,
condition_image=condition_image,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
max_sequence_length=512
).images[0]
final_image = image.resize(image.size)
return final_image
# Define examples to be shown within the Gradio interface
examples = [
# Each example is a list corresponding to the inputs:
# [Input Image, Prompt, Guidance Scale, Number of Steps, LoRA Name]
["assets/1.png", "add a halo and wings for the cat by sksmagiceffects", 3.5, 20, "sksmagiceffects"]
]
# Create Gradio interface with sliders for numeric inputs
iface = gr.Interface(
fn=generate_image,
inputs=[
gr.Image(label="Input Image", type="pil", value=default_image),
# gr.Slider(label="Height", value=768, minimum=256, maximum=1024, step=64),
# gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64),
gr.Textbox(label="Prompt", value="add a halo and wings for the cat by sksmagiceffects"),
gr.Slider(label="Guidance Scale", value=3.5, minimum=1.0, maximum=10.0, step=0.1),
gr.Slider(label="Number of Steps", value=20, minimum=1, maximum=100, step=1),
gr.Dropdown(
label="LoRA Name",
choices=["pretrained", "sksmagiceffects", "sksmonstercalledlulu",
"skspaintingeffects", "sksedgeeffect", "skscatooneffect"],
value="sksmagiceffects"
)
],
outputs=gr.Image(label="Output Image", type="pil"),
title="FLUX Image Generation with LoRA",
examples=examples
)
if __name__ == "__main__":
iface.launch()