Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
def load_text_encoders(args, class_one, class_two): | |
text_encoder_one = class_one.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
) | |
text_encoder_two = class_two.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant | |
) | |
return text_encoder_one, text_encoder_two | |
def tokenize_prompt(tokenizer, prompt, max_sequence_length): | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
return_length=False, | |
return_overflowing_tokens=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
return text_input_ids | |
def tokenize_prompt_clip(tokenizer, prompt): | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=77, | |
truncation=True, | |
return_length=False, | |
return_overflowing_tokens=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
return text_input_ids | |
def tokenize_prompt_t5(tokenizer, prompt): | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=512, | |
truncation=True, | |
return_length=False, | |
return_overflowing_tokens=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
return text_input_ids | |
def _encode_prompt_with_t5( | |
text_encoder, | |
tokenizer, | |
max_sequence_length=512, | |
prompt=None, | |
num_images_per_prompt=1, | |
device=None, | |
text_input_ids=None, | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
if tokenizer is not None: | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
return_length=False, | |
return_overflowing_tokens=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
else: | |
if text_input_ids is None: | |
raise ValueError("text_input_ids must be provided when the tokenizer is not specified") | |
prompt_embeds = text_encoder(text_input_ids.to(device))[0] | |
dtype = text_encoder.dtype | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
_, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
return prompt_embeds | |
def _encode_prompt_with_clip( | |
text_encoder, | |
tokenizer, | |
prompt: str, | |
device=None, | |
text_input_ids=None, | |
num_images_per_prompt: int = 1, | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
if tokenizer is not None: | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=77, | |
truncation=True, | |
return_overflowing_tokens=False, | |
return_length=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
else: | |
if text_input_ids is None: | |
raise ValueError("text_input_ids must be provided when the tokenizer is not specified") | |
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False) | |
# Use pooled output of CLIPTextModel | |
prompt_embeds = prompt_embeds.pooler_output | |
prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
return prompt_embeds | |
def encode_prompt( | |
text_encoders, | |
tokenizers, | |
prompt: str, | |
max_sequence_length, | |
device=None, | |
num_images_per_prompt: int = 1, | |
text_input_ids_list=None, | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
dtype = text_encoders[0].dtype | |
pooled_prompt_embeds = _encode_prompt_with_clip( | |
text_encoder=text_encoders[0], | |
tokenizer=tokenizers[0], | |
prompt=prompt, | |
device=device if device is not None else text_encoders[0].device, | |
num_images_per_prompt=num_images_per_prompt, | |
text_input_ids=text_input_ids_list[0] if text_input_ids_list else None, | |
) | |
prompt_embeds = _encode_prompt_with_t5( | |
text_encoder=text_encoders[1], | |
tokenizer=tokenizers[1], | |
max_sequence_length=max_sequence_length, | |
prompt=prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device if device is not None else text_encoders[1].device, | |
text_input_ids=text_input_ids_list[1] if text_input_ids_list else None, | |
) | |
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
return prompt_embeds, pooled_prompt_embeds, text_ids | |
def encode_token_ids(text_encoders, tokens, accelerator, num_images_per_prompt=1, device=None): | |
text_encoder_clip = text_encoders[0] | |
text_encoder_t5 = text_encoders[1] | |
tokens_clip, tokens_t5 = tokens[0], tokens[1] | |
batch_size = tokens_clip.shape[0] | |
if device == "cpu": | |
device = "cpu" | |
else: | |
device = accelerator.device | |
# clip | |
prompt_embeds = text_encoder_clip(tokens_clip.to(device), output_hidden_states=False) | |
# Use pooled output of CLIPTextModelpreprocess_train | |
prompt_embeds = prompt_embeds.pooler_output | |
prompt_embeds = prompt_embeds.to(dtype=text_encoder_clip.dtype, device=accelerator.device) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
pooled_prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=text_encoder_clip.dtype, device=accelerator.device) | |
# t5 | |
prompt_embeds = text_encoder_t5(tokens_t5.to(device))[0] | |
dtype = text_encoder_t5.dtype | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=accelerator.device) | |
_, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=accelerator.device, dtype=dtype) | |
return prompt_embeds, pooled_prompt_embeds, text_ids |