kmr_tts / app.py
amedcj's picture
Update app.py
4ab5184 verified
import subprocess
import sys
# Force upgrade gradio
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "gradio>=4.44.0"])
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
import gradio as gr
import numpy as np
import scipy.io.wavfile
import tempfile
import os
from transformers import VitsModel, AutoTokenizer
import torch
import re
import traceback
print("Starting application...")
# Global variables for models
punct_pipe = None
model = None
tokenizer = None
def load_models():
global punct_pipe, model, tokenizer
print("Loading punctuation model...")
try:
punctuation_model_id = "oliverguhr/fullstop-punctuation-multilang-large"
punct_tokenizer = AutoTokenizer.from_pretrained(punctuation_model_id)
punct_model = AutoModelForTokenClassification.from_pretrained(punctuation_model_id)
punct_pipe = pipeline("token-classification", model=punct_model, tokenizer=punct_tokenizer, aggregation_strategy="simple")
print("✓ Punctuation model loaded successfully")
except Exception as e:
print(f"✗ Error loading punctuation model: {e}")
punct_pipe = None
print("Loading TTS model...")
try:
model = VitsModel.from_pretrained("facebook/mms-tts-kmr-script_latin")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kmr-script_latin")
print("✓ TTS model loaded successfully")
except Exception as e:
print(f"✗ Error loading TTS model: {e}")
model = None
tokenizer = None
# Load models at startup
load_models()
# Simple number-to-Kurmanji-word mapping
num2word = {
"0": "sifir", "1": "yek", "2": "du", "3": "sê", "4": "çar", "5": "pênc",
"6": "şeş", "7": "heft", "8": "heşt", "9": "neh", "10": "deh"
}
def replace_numbers_with_words(text):
def repl(match):
num = match.group()
return num2word.get(num, num)
return re.sub(r'\b\d+\b', repl, text)
def restore_punctuation(text):
if punct_pipe is None:
print("Punctuation model not available, skipping...")
return text
try:
results = punct_pipe(text)
punctuated = ""
for token in results:
word = token['word']
punct = token.get('entity_group', '')
if punct == "PERIOD":
punctuated += word + ". "
elif punct == "COMMA":
punctuated += word + ", "
else:
punctuated += word + " "
return punctuated.strip()
except Exception as e:
print(f"Punctuation error: {e}")
return text
def text_to_speech(text):
print(f"=== TTS Function Called ===")
print(f"Input text: '{text}'")
try:
# Basic validation
if not text or text.strip() == "":
error_msg = "Please enter some text"
print(f"Error: {error_msg}")
return None
# Check if models are loaded
if model is None or tokenizer is None:
error_msg = "TTS model not loaded properly"
print(f"Error: {error_msg}")
return None
print("Processing text...")
# Process text
processed_text = text.strip()
processed_text = replace_numbers_with_words(processed_text)
print(f"Processed text: '{processed_text}'")
# Tokenize
print("Tokenizing...")
inputs = tokenizer(processed_text, return_tensors="pt")
print(f"Tokenized successfully, input_ids shape: {inputs['input_ids'].shape}")
# Generate audio
print("Generating audio...")
with torch.no_grad():
output = model(**inputs).waveform
print(f"Audio generated, shape: {output.shape}")
# Convert to numpy
waveform = output.squeeze().numpy()
print(f"Waveform shape: {waveform.shape}")
# Save to file
print("Saving audio file...")
tmp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
tmp_path = tmp_file.name
tmp_file.close()
scipy.io.wavfile.write(
tmp_path,
rate=model.config.sampling_rate,
data=waveform
)
print(f"✓ Audio saved to: {tmp_path}")
print("=== TTS Function Completed Successfully ===")
return tmp_path
except Exception as e:
error_msg = f"Error in TTS: {str(e)}"
print(f"✗ {error_msg}")
print("Full traceback:")
traceback.print_exc()
return None
print("Creating Gradio interface...")
# Interface with Kurdish button texts
interface = gr.Interface(
fn=text_to_speech,
inputs=gr.Textbox(
label="Nivîseke bi kurmancî binivîse", # "Write Kurmanji Text"
placeholder="Mînak: Silav! Ez baş im." # "Example: Hello! I am fine."
),
outputs=gr.Audio(label="Deng"), # "Voice/Sound"
title="Bernameya Nivîs-bo-Deng ya bi kurmancî - Kurmanji Text-to-Speech",
description="Nivîseke bi kurmancî binivîse ku bo deng bê veguherandin. / Write Kurmanji Kurdish text and listen to it.",
submit_btn="Bişîne", # "Send/Submit"
clear_btn="Paqij bike", # "Clear"
examples=[
["Silav! Ez baş im."],
["Tu çawa yî?"],
["Ez ji Kurdistanê me."]
]
)
print("Launching interface...")
if __name__ == "__main__":
interface.launch()