Spaces:
Sleeping
Sleeping
""" Vision Transformer (ViT) in PyTorch | |
A PyTorch implement of Vision Transformers as described in: | |
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' | |
- https://arxiv.org/abs/2010.11929 | |
`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` | |
- https://arxiv.org/abs/2106.10270 | |
The official jax code is released and available at https://github.com/google-research/vision_transformer | |
DeiT model defs and weights from https://github.com/facebookresearch/deit, | |
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 | |
Acknowledgments: | |
* The paper authors for releasing code and weights, thanks! | |
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out | |
for some einops/einsum fun | |
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT | |
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert | |
Hacked together by / Copyright 2021 Ross Wightman | |
""" | |
import math | |
import logging | |
from functools import partial | |
from collections import OrderedDict | |
from copy import deepcopy | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_ | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD | |
from .helpers import build_model_with_cfg, named_apply, adapt_input_conv | |
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_ | |
from .registry import register_model | |
_logger = logging.getLogger(__name__) | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# patch models (weights from official Google JAX impl) | |
'vit_tiny_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_tiny_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_small_patch32_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_small_patch32_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_small_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_small_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_base_patch32_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_base_patch32_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_base_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'), | |
'vit_base_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_large_patch32_224': _cfg( | |
url='', # no official model weights for this combo, only for in21k | |
), | |
'vit_large_patch32_384': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_large_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz'), | |
'vit_large_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
# patch models, imagenet21k (weights from official Google JAX impl) | |
'vit_tiny_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_small_patch32_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_small_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_base_patch32_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_base_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_large_patch32_224_in21k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth', | |
num_classes=21843), | |
'vit_large_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz', | |
num_classes=21843), | |
'vit_huge_patch14_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz', | |
hf_hub='timm/vit_huge_patch14_224_in21k', | |
num_classes=21843), | |
# deit models (FB weights) | |
'deit_tiny_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), | |
'deit_small_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), | |
'deit_base_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), | |
'deit_base_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0), | |
'deit_tiny_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')), | |
'deit_small_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')), | |
'deit_base_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')), | |
'deit_base_distilled_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0, | |
classifier=('head', 'head_dist')), | |
# ViT ImageNet-21K-P pretraining by MILL | |
'vit_base_patch16_224_miil_in21k': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_in21k_miil.pth', | |
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221, | |
), | |
'vit_base_patch16_224_miil': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm' | |
'/vit_base_patch16_224_1k_miil_84_4.pth', | |
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', | |
), | |
} | |
class CrossAttention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 #这行多了个qk_scale #0.125 | |
self.wq = nn.Linear(dim, dim, bias=qkv_bias) | |
self.wk = nn.Linear(dim, dim, bias=qkv_bias) | |
self.wv = nn.Linear(dim, dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape #2 512 768 | |
q = self.wq(x[:, 0:int(N/2), ...]).reshape(B, int(N/2), self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)#2 12 256 64 | |
k = self.wk(x[:, (int(N/2)):, ...]).reshape(B, int(N/2), self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
v = self.wv(x[:, (int(N/2)):, ...]).reshape(B, int(N/2), self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, int(N/2), C) #变成了B/2 2 256 768 | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None,attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, data): | |
b,c,h = data.shape | |
x,atten_mask = data[:,0:int(c/2),...],data[:,int(c/2):,...] | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] #2,12,49,64 # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale #2,12,49,49 #mask 2,1,49,49 | |
if atten_mask.sum() != 0: | |
atten_mask = atten_mask.unsqueeze(1) # 2,1,49,49 | |
attn = attn + atten_mask | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Attention_ori(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None,attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] #2,12,49,64 # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale #2,12,49,49 #mask 2,1,49,49 | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, data): | |
b,c,h = data.shape | |
x,mask = data[:,0:int(c/2),...],data[:,int(c/2):,...] | |
x = x + self.drop_path(self.attn(torch.cat([self.norm1(x),mask],dim=1))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return torch.cat([x,mask],dim=1) | |
class mask_PatchEmbed(nn.Module): | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, norm_layer=None, flatten=True): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.flatten = flatten | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
self.proj = nn.Conv2d(in_chans, 1, kernel_size=patch_size, stride=patch_size).requires_grad_(False) | |
nn.init.ones_(self.proj.weight) | |
nn.init.zeros_(self.proj.bias) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
return x | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` | |
- https://arxiv.org/abs/2010.11929 | |
Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` | |
- https://arxiv.org/abs/2012.12877 | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, | |
act_layer=None,as_backbone=True, weight_init=''): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set | |
distilled (bool): model includes a distillation token and head as in DeiT models | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
embed_layer (nn.Module): patch embedding layer | |
norm_layer: (nn.Module): normalization layer | |
weight_init: (str): weight init scheme | |
""" | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_tokens = 2 if distilled else 1 | |
self.num_heads = num_heads | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
act_layer = act_layer or nn.GELU | |
self.as_backbone = as_backbone #是否分类任务,如果不是,class不加上去 | |
self.patch_embed = embed_layer( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
self.mask_embed = mask_PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None | |
if not self.as_backbone: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) | |
else: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.Sequential(*[ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, | |
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# Representation layer | |
if representation_size and not distilled: | |
self.num_features = representation_size | |
self.pre_logits = nn.Sequential(OrderedDict([ | |
('fc', nn.Linear(embed_dim, representation_size)), | |
('act', nn.Tanh()) | |
])) | |
else: | |
self.pre_logits = nn.Identity() | |
if not self.as_backbone: | |
self.avgpool = nn.AdaptiveAvgPool1d(1) | |
# Classifier head(s) | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
self.head_dist = None | |
if distilled: | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() | |
self.init_weights(weight_init) | |
def init_weights(self, mode=''): | |
assert mode in ('jax', 'jax_nlhb', 'nlhb', '') | |
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. | |
trunc_normal_(self.pos_embed, std=.02) | |
if self.dist_token is not None: | |
trunc_normal_(self.dist_token, std=.02) | |
if mode.startswith('jax'): | |
# leave cls token as zeros to match jax impl | |
named_apply(partial(_init_vit_weights, head_bias=head_bias, jax_impl=True), self) | |
else: | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(_init_vit_weights) | |
def _init_weights(self, m): | |
# this fn left here for compat with downstream users | |
_init_vit_weights(m) | |
def load_pretrained(self, checkpoint_path, prefix=''): | |
_load_weights(self, checkpoint_path, prefix) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token', 'dist_token'} | |
def get_classifier(self): | |
if self.dist_token is None: | |
return self.head | |
else: | |
return self.head, self.head_dist | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
if self.num_tokens == 2: | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, data): | |
x,mask = data[:,0,:,:].unsqueeze(1),data[:,1,:,:].unsqueeze(1) | |
x = self.patch_embed(x)#B N C | |
atten_mask = torch.zeros_like(x) # 2 49 768 | |
if mask.sum() != 0: | |
mask = self.mask_embed(mask) ### | |
mask.squeeze_(dim=2) | |
mask[mask != 0] = 1 ### H W数目token C编码长度 | |
k1 = mask[:, None, :] | |
k2 = torch.ones_like(mask)[:, :, None] | |
k3 = k1 * k2 | |
atten_mask = (1.0 - k3) * (-1e6) | |
atten_mask.requires_grad_(True) | |
self.atten_mask = atten_mask | |
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
if not self.as_backbone: | |
if self.dist_token is None: | |
x = torch.cat((cls_token, x), dim=1) | |
else: | |
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = self.pos_drop(x + self.pos_embed) #2 49 768 | |
x = self.blocks(torch.cat([x,atten_mask],dim=1)) | |
b,c,h = x.shape | |
x = x[:,0:int(c/2),...] | |
x = self.norm(x) | |
if self.as_backbone: | |
# x = self.avgpool(x.transpose(1, 2)) # B C 1 | |
# x = torch.flatten(x, 1) | |
return x | |
if self.dist_token is None: | |
return self.pre_logits(x[:, 0]) | |
else: | |
return x[:, 0], x[:, 1] | |
def forward(self, data): | |
x = self.forward_features(data) #2 49 768 | |
if self.as_backbone: | |
return x | |
else: | |
if self.head_dist is not None: | |
x, x_dist = self.head(x[0]), self.head_dist(x[1]) # x must be a tuple | |
if self.training and not torch.jit.is_scripting(): | |
# during inference, return the average of both classifier predictions | |
return x, x_dist | |
else: | |
return (x + x_dist) / 2 | |
else: | |
x = self.head(x) | |
return x | |
def _init_vit_weights(module: nn.Module, name: str = '', head_bias: float = 0., jax_impl: bool = False): | |
""" ViT weight initialization | |
* When called without n, head_bias, jax_impl args it will behave exactly the same | |
as my original init for compatibility with prev hparam / downstream use cases (ie DeiT). | |
* When called w/ valid n (module name) and jax_impl=True, will (hopefully) match JAX impl | |
""" | |
if isinstance(module, nn.Linear): | |
if name.startswith('head'): | |
nn.init.zeros_(module.weight) | |
nn.init.constant_(module.bias, head_bias) | |
elif name.startswith('pre_logits'): | |
lecun_normal_(module.weight) | |
nn.init.zeros_(module.bias) | |
else: | |
if jax_impl: | |
nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
if 'mlp' in name: | |
nn.init.normal_(module.bias, std=1e-6) | |
else: | |
nn.init.zeros_(module.bias) | |
else: | |
trunc_normal_(module.weight, std=.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif jax_impl and isinstance(module, nn.Conv2d): | |
# NOTE conv was left to pytorch default in my original init | |
lecun_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm2d)): | |
nn.init.zeros_(module.bias) | |
nn.init.ones_(module.weight) | |
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): | |
""" Load weights from .npz checkpoints for official Google Brain Flax implementation | |
""" | |
import numpy as np | |
def _n2p(w, t=True): | |
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: | |
w = w.flatten() | |
if t: | |
if w.ndim == 4: | |
w = w.transpose([3, 2, 0, 1]) | |
elif w.ndim == 3: | |
w = w.transpose([2, 0, 1]) | |
elif w.ndim == 2: | |
w = w.transpose([1, 0]) | |
return torch.from_numpy(w) | |
w = np.load(checkpoint_path) | |
if not prefix and 'opt/target/embedding/kernel' in w: | |
prefix = 'opt/target/' | |
if hasattr(model.patch_embed, 'backbone'): | |
# hybrid | |
backbone = model.patch_embed.backbone | |
stem_only = not hasattr(backbone, 'stem') | |
stem = backbone if stem_only else backbone.stem | |
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) | |
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) | |
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) | |
if not stem_only: | |
for i, stage in enumerate(backbone.stages): | |
for j, block in enumerate(stage.blocks): | |
bp = f'{prefix}block{i + 1}/unit{j + 1}/' | |
for r in range(3): | |
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) | |
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) | |
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) | |
if block.downsample is not None: | |
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) | |
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) | |
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) | |
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) | |
else: | |
embed_conv_w = adapt_input_conv( | |
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) | |
model.patch_embed.proj.weight.copy_(embed_conv_w) | |
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) | |
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) | |
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) | |
if pos_embed_w.shape != model.pos_embed.shape: | |
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights | |
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) | |
model.pos_embed.copy_(pos_embed_w) | |
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) | |
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) | |
if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]: | |
model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) | |
model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) | |
if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w: | |
model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel'])) | |
model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias'])) | |
for i, block in enumerate(model.blocks.children()): | |
block_prefix = f'{prefix}Transformer/encoderblock_{i}/' | |
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' | |
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) | |
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) | |
block.attn.qkv.weight.copy_(torch.cat([ | |
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) | |
block.attn.qkv.bias.copy_(torch.cat([ | |
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) | |
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) | |
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) | |
for r in range(2): | |
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) | |
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) | |
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) | |
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) | |
def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()): | |
# Rescale the grid of position embeddings when loading from state_dict. Adapted from | |
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 | |
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) | |
ntok_new = posemb_new.shape[1] | |
if num_tokens: | |
posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:] | |
ntok_new -= num_tokens | |
else: | |
posemb_tok, posemb_grid = posemb[:, :0], posemb[0] | |
gs_old = int(math.sqrt(len(posemb_grid))) | |
if not len(gs_new): # backwards compatibility | |
gs_new = [int(math.sqrt(ntok_new))] * 2 | |
assert len(gs_new) >= 2 | |
_logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new) | |
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | |
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bilinear') | |
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) | |
posemb = torch.cat([posemb_tok, posemb_grid], dim=1) | |
return posemb | |
def checkpoint_filter_fn(state_dict, model): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
out_dict = {} | |
if 'model' in state_dict: | |
# For deit models | |
state_dict = state_dict['model'] | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k and len(v.shape) < 4: | |
# For old models that I trained prior to conv based patchification | |
O, I, H, W = model.patch_embed.proj.weight.shape | |
v = v.reshape(O, -1, H, W) | |
elif k == 'pos_embed' and v.shape != model.pos_embed.shape: | |
# To resize pos embedding when using model at different size from pretrained weights | |
v = resize_pos_embed( | |
v, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) | |
out_dict[k] = v | |
return out_dict | |
def _create_vision_transformer(variant, pretrained=False, default_cfg=None, **kwargs): | |
default_cfg = default_cfg or default_cfgs[variant] | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
# NOTE this extra code to support handling of repr size for in21k pretrained models | |
default_num_classes = default_cfg['num_classes'] | |
num_classes = kwargs.get('num_classes', default_num_classes) | |
repr_size = kwargs.pop('representation_size', None) | |
if repr_size is not None and num_classes != default_num_classes: | |
# Remove representation layer if fine-tuning. This may not always be the desired action, | |
# but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface? | |
_logger.warning("Removing representation layer for fine-tuning.") | |
repr_size = None | |
model = build_model_with_cfg( | |
VisionTransformer, variant, pretrained, | |
default_cfg=default_cfg, | |
representation_size=repr_size, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
pretrained_custom_load='npz' in default_cfg['url'], | |
**kwargs) | |
return model | |
def vit_tiny_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Tiny (Vit-Ti/16) | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_tiny_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Tiny (Vit-Ti/16) @ 384x384. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch32_224(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/32) | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch32_384(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/32) at 384x384. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/16) | |
NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/16) | |
NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_224(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_384(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch32_224(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch32_384(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_tiny_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Tiny (Vit-Ti/16). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer('vit_tiny_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch32_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/16) | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch32_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/16) | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict( | |
patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch32_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights | |
""" | |
model_kwargs = dict( | |
patch_size=32, embed_dim=1024, depth=24, num_heads=16, representation_size=1024, **kwargs) | |
model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights | |
""" | |
model_kwargs = dict( | |
patch_size=14, embed_dim=1280, depth=32, num_heads=16, representation_size=1280, **kwargs) | |
model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_tiny_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer('deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_small_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('deit_small_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_base_patch16_224(pretrained=False, **kwargs): | |
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('deit_base_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_base_patch16_384(pretrained=False, **kwargs): | |
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('deit_base_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer( | |
'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def deit_small_distilled_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer( | |
'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def deit_base_distilled_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer( | |
'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def deit_base_distilled_patch16_384(pretrained=False, **kwargs): | |
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer( | |
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def vit_base_patch16_224_miil_in21k(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_miil_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224_miil(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_miil', pretrained=pretrained, **model_kwargs) | |
return model | |