test_RAG / app.py
amasood's picture
Update app.py
401d7df verified
import os
import streamlit as st
import faiss
import pickle
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from groq import Groq
# Constants
DATASET_NAME = "neural-bridge/rag-dataset-1200"
MODEL_NAME = "all-MiniLM-L6-v2"
INDEX_FILE = "faiss_index.pkl"
DOCS_FILE = "contexts.pkl"
# Groq API client
client = Groq(api_key=os.environ.get("MY_KEY"))
# Streamlit page setup
st.set_page_config(page_title="RAG App", layout="wide")
st.title("🧠 Retrieval-Augmented Generation (RAG) with Groq")
# Function to load or create database
@st.cache_resource
def setup_database():
st.info("Setting up vector database...")
progress = st.progress(0)
# Step 1: Load dataset
dataset = load_dataset(DATASET_NAME, split="train")
contexts = [entry["context"] for entry in dataset]
progress.progress(25)
# Step 2: Compute embeddings
embedder = SentenceTransformer(MODEL_NAME)
embeddings = embedder.encode(contexts, show_progress_bar=True)
progress.progress(50)
# Step 3: Build FAISS index
dimension = embeddings[0].shape[0]
faiss_index = faiss.IndexFlatL2(dimension)
faiss_index.add(embeddings)
progress.progress(75)
# Step 4: Save index and contexts for future use
with open(INDEX_FILE, "wb") as f:
pickle.dump(faiss_index, f)
with open(DOCS_FILE, "wb") as f:
pickle.dump(contexts, f)
progress.progress(100)
st.success("Database setup complete!")
return faiss_index, contexts
# Check if the index and contexts are saved, otherwise set up
if os.path.exists(INDEX_FILE) and os.path.exists(DOCS_FILE):
with open(INDEX_FILE, "rb") as f:
faiss_index = pickle.load(f)
with open(DOCS_FILE, "rb") as f:
all_contexts = pickle.load(f)
st.info("Loaded existing database.")
else:
faiss_index, all_contexts = setup_database()
# UI for sample questions
sample_questions = [
"What is the purpose of the RAG dataset?",
"How does Falcon RefinedWeb contribute to this dataset?",
"What are the benefits of using retrieval-augmented generation?",
"Explain the structure of the RAG-1200 dataset.",
]
st.subheader("Ask a question based on the dataset:")
question = st.text_input("Enter your question:", value=sample_questions[0])
if st.button("Ask"):
if question.strip() == "":
st.warning("Please enter a question.")
else:
with st.spinner("Retrieving and generating answer..."):
# Embed user query
embedder = SentenceTransformer(MODEL_NAME)
query_embedding = embedder.encode([question])
D, I = faiss_index.search(query_embedding, k=1)
# Get closest context
context = all_contexts[I[0][0]]
prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
# Call Groq model
response = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-70b-8192"
)
answer = response.choices[0].message.content
st.success("Answer:")
st.markdown(answer)
with st.expander("πŸ” Retrieved Context"):
st.markdown(context)