amartyasaran commited on
Commit
c519d3a
·
verified ·
1 Parent(s): c2d8b7b

App Deployed

Browse files
Files changed (2) hide show
  1. app.py +175 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import plotly.express as px
4
+ from fpdf import FPDF
5
+ import base64
6
+ from transformers import pipeline
7
+ from openai import OpenAI
8
+
9
+ pipe = pipeline("sentiment-analysis",
10
+ model="finiteautomata/bertweet-base-sentiment-analysis")
11
+
12
+
13
+ def col_labels(df, column_name):
14
+ label_count = df[column_name].value_counts()
15
+ return label_count
16
+
17
+
18
+ def plots(labels):
19
+ fig = px.pie(names=labels.index, values=labels.values)
20
+ fig.update_layout(
21
+ showlegend=True,
22
+ autosize=False,
23
+ width=500,
24
+ height=500
25
+ )
26
+ st.plotly_chart(fig, use_container_width=True)
27
+
28
+
29
+ def generate_pdf_report(df, questions):
30
+ pdf = FPDF()
31
+ pdf.add_page()
32
+ pdf.set_font("Arial", size=12, style='B')
33
+ pdf.cell(200, 10, txt="Bennett University NAAC Survey Report",
34
+ ln=True, align="C")
35
+ pdf.ln(10)
36
+ for question in questions:
37
+ pdf.multi_cell(200, 10, txt=question)
38
+ labels = col_labels(df, question)
39
+ for label, count in labels.items():
40
+ pdf.cell(200, 10, txt=f"{label}: {count}", ln=True)
41
+ pdf.ln(5)
42
+ pdf_file = "survey_report.pdf"
43
+ pdf.output(pdf_file)
44
+ return pdf_file
45
+
46
+
47
+ def chunking(arr):
48
+ max_chunk_size = 1024
49
+ chunks = []
50
+ current_chunk = ""
51
+
52
+ for recommendation in arr:
53
+ if len(current_chunk) + len(arr) + len('. ') <= max_chunk_size:
54
+ current_chunk += recommendation + '. '
55
+ else:
56
+ chunks.append(current_chunk[:-2])
57
+ current_chunk = recommendation + '. '
58
+
59
+ if current_chunk:
60
+ chunks.append(current_chunk[:-2])
61
+
62
+ return chunks
63
+
64
+
65
+ def generate_summary(text):
66
+ input_chunks = chunking(text)
67
+ output_chunks = []
68
+ client = OpenAI()
69
+ for chunk in input_chunks:
70
+ response = client.completions.create(
71
+ model="gpt-3.5-turbo-instruct",
72
+ prompt=(
73
+ f"Please give summary of:\n{chunk}. The summary given should be in bullet points.\n\nSummary:"),
74
+ temperature=0.7,
75
+ max_tokens=1024,
76
+ n=1,
77
+ stop=None
78
+ )
79
+ summary = response.choices[0].text.strip()
80
+ output_chunks.append(summary)
81
+ return " ".join(output_chunks)
82
+
83
+ st.set_page_config(
84
+ page_title="Bennett University NAAC Survey Report",
85
+ page_icon="📊",
86
+ layout="wide"
87
+ )
88
+
89
+ hide_streamlit_style = """
90
+ <style>
91
+ #MainMenu {visibility: hidden;}
92
+ footer {visibility: hidden;}
93
+ </style>
94
+ """
95
+
96
+ st.markdown(hide_streamlit_style, unsafe_allow_html=True)
97
+
98
+
99
+ st.markdown(
100
+ "<h1 style='text-align: center; color: #008080;'>Bennett University NAAC Survey Report</h1>",
101
+ unsafe_allow_html=True
102
+ )
103
+
104
+ file = st.file_uploader("Upload Response File", type=['csv'])
105
+
106
+ if file is not None:
107
+ st.sidebar.info("File uploaded successfully! Proceed with the analysis.")
108
+
109
+ df = pd.read_csv(file)
110
+
111
+ questions = [
112
+ 'How much of the syllabus was covered in the class?',
113
+ 'How well did the teachers prepare for the classes?',
114
+ 'How well were the teachers able to communicate?',
115
+ 'The teacher\'s approach to teaching can best be described as',
116
+ 'Fairness of the internal evaluation process by the teachers.',
117
+ 'Was your performance in assignments discussed with you?',
118
+ 'The institute takes active interest in promoting internship, student exchange, field visit opportunities for students.',
119
+ 'The teaching and mentoring process in your institution facilitates you in cognitive, social and emotional growth.',
120
+ 'The institution provides multiple opportunities to learn and grow.',
121
+ 'Teachers inform you about your expected competencies, course outcomes and programme outcomes.',
122
+ 'Your mentor does a necessary follow-up with an assigned task to you.',
123
+ 'The teachers illustrate the concepts through examples and applications.',
124
+ 'The teachers identify your strengths and encourage you with providing right level of challenges.',
125
+ 'Teachers are able to identify your weaknesses and help you to overcome them.',
126
+ 'The institution makes effort to engage students in the monitoring, review and continuous quality improvement of the teaching learning process.',
127
+ 'The institute/ teachers use student centric methods, such as experiential learning, participative learning and problem solving methodologies for enhancing learning experiences.',
128
+ 'Teachers encourage you to participate in extracurricular activities.',
129
+ 'Efforts are made by the institute/ teachers to inculcate soft skills, life skills and employability skills to make you ready for the world of work.',
130
+ 'What percentage of teachers use ICT tools such as LCD projector, Multimedia, etc. while teaching.',
131
+ 'The overall quality of teaching-learning process in your institute is very good.',
132
+ ]
133
+
134
+ st.write("---")
135
+ st.write("### Survey Questions Analysis")
136
+ st.write("Below are the analysis results for each survey question:")
137
+
138
+ pos_comments = []
139
+ neg_comments = []
140
+ neu_comments = []
141
+ for data in df['Give three observation / suggestions to improve the overall teaching - learning experience in your institution.']:
142
+ sentiment = pipe(data)[0]['label']
143
+ if sentiment == "POS":
144
+ pos_comments.append(data)
145
+ if sentiment == "NEG":
146
+ neg_comments.append(data)
147
+ if sentiment == "NEU":
148
+ neu_comments.append(data)
149
+ else:
150
+ neu_comments.append(data)
151
+
152
+ st.subheader("Positive Comments")
153
+ st.write(generate_summary(pos_comments))
154
+ st.write("---")
155
+ st.subheader("Negative Comments")
156
+ st.write(generate_summary(neg_comments))
157
+
158
+ st.sidebar.markdown("---")
159
+ st.sidebar.write("#### Analysis Settings")
160
+ selected_questions = [
161
+ question for question in questions if st.sidebar.checkbox(question, value=True)]
162
+ for question in selected_questions:
163
+ st.write("")
164
+ st.subheader(question)
165
+ labels = col_labels(df, question)
166
+ plots(labels)
167
+
168
+ st.sidebar.markdown("---")
169
+ st.sidebar.write("#### Download Report")
170
+ if st.sidebar.button("Generate PDF Report"):
171
+ pdf_file = generate_pdf_report(df, selected_questions)
172
+ with open(pdf_file, "rb") as f:
173
+ base64_pdf = base64.b64encode(f.read()).decode("utf-8")
174
+ href = f"<a href='data:application/octet-stream;base64,{base64_pdf}' download='survey_report.pdf'><button>Download PDF Report</button></a>"
175
+ st.sidebar.markdown(href, unsafe_allow_html=True)
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ openai
2
+ transformers
3
+ plotly
4
+ fpdf
5
+ emoji
6
+ pandas
7
+ streamlit
8
+ torch