amanmibra commited on
Commit
232d8f8
·
1 Parent(s): 3dfc859

post aisf commit

Browse files
models/aisf/void_20230517_112128.pth ADDED
Binary file (655 kB). View file
 
models/aisf/void_20230517_113634.pth ADDED
Binary file (655 kB). View file
 
models/aisf/void_20230517_115313.pth ADDED
Binary file (655 kB). View file
 
notebooks/AISF Audio Preprocessing.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/AISF Model Train and Eval.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/AISF War Room.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/playground.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
server/main.py CHANGED
@@ -14,7 +14,7 @@ from cnn import CNNetwork
14
 
15
  # load model
16
  model = CNNetwork()
17
- state_dict = torch.load("../models/aisf/void_20230517_102846.pth")
18
  model.load_state_dict(state_dict)
19
 
20
  # TODO: update to grabbing labels stored on model
 
14
 
15
  # load model
16
  model = CNNetwork()
17
+ state_dict = torch.load("../models/aisf/void_20230517_113634.pth")
18
  model.load_state_dict(state_dict)
19
 
20
  # TODO: update to grabbing labels stored on model
train.py CHANGED
@@ -12,10 +12,11 @@ from dataset import VoiceDataset
12
  from cnn import CNNetwork
13
 
14
  BATCH_SIZE = 128
15
- EPOCHS = 100
16
  LEARNING_RATE = 0.001
17
 
18
  TRAIN_FILE="data/train"
 
19
  TEST_FILE="data/test"
20
  SAMPLE_RATE=48000
21
 
@@ -35,7 +36,7 @@ def train(model, train_dataloader, loss_fn, optimizer, device, epochs, test_data
35
  training_loss.append(train_epoch_loss/len(train_dataloader))
36
  training_acc.append(train_epoch_acc/len(train_dataloader))
37
 
38
- print("Training Loss: {:.2f}, Training Accuracy {:.2f}".format(training_loss[i], training_acc[i]))
39
 
40
  if test_dataloader:
41
  # test model
@@ -45,7 +46,7 @@ def train(model, train_dataloader, loss_fn, optimizer, device, epochs, test_data
45
  testing_loss.append(test_epoch_loss/len(test_dataloader))
46
  testing_acc.append(test_epoch_acc/len(test_dataloader))
47
 
48
- print("Testing Loss: {:.2f}, Testing Accuracy {:.2f}".format(testing_loss[i], testing_acc[i]))
49
 
50
  print ("-------------------------------------------- \n")
51
 
@@ -116,24 +117,28 @@ if __name__ == "__main__":
116
  n_mels=128
117
  )
118
 
119
- train_dataset = VoiceDataset(TRAIN_FILE, mel_spectrogram, device)
120
  train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
121
 
122
  # construct model
123
  model = CNNetwork().to(device)
124
  print(model)
 
125
 
126
  # init loss function and optimizer
127
  loss_fn = nn.CrossEntropyLoss()
128
- optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
 
129
 
130
 
131
  # train model
132
  train(model, train_dataloader, loss_fn, optimizer, device, EPOCHS)
133
 
 
 
134
  # save model
135
  now = datetime.now()
136
  now = now.strftime("%Y%m%d_%H%M%S")
137
- model_filename = f"models/void_{now}.pth"
138
  torch.save(model.state_dict(), model_filename)
139
  print(f"Trained void model saved at {model_filename}")
 
12
  from cnn import CNNetwork
13
 
14
  BATCH_SIZE = 128
15
+ EPOCHS = 10
16
  LEARNING_RATE = 0.001
17
 
18
  TRAIN_FILE="data/train"
19
+ AISF_TRAIN_FILE="data/aisf/train"
20
  TEST_FILE="data/test"
21
  SAMPLE_RATE=48000
22
 
 
36
  training_loss.append(train_epoch_loss/len(train_dataloader))
37
  training_acc.append(train_epoch_acc/len(train_dataloader))
38
 
39
+ print("Training Loss: {:.2f}, Training Accuracy {}".format(training_loss[i], training_acc[i]))
40
 
41
  if test_dataloader:
42
  # test model
 
46
  testing_loss.append(test_epoch_loss/len(test_dataloader))
47
  testing_acc.append(test_epoch_acc/len(test_dataloader))
48
 
49
+ print("Testing Loss: {:.2f}, Testing Accuracy {}".format(testing_loss[i], testing_acc[i]))
50
 
51
  print ("-------------------------------------------- \n")
52
 
 
117
  n_mels=128
118
  )
119
 
120
+ train_dataset = VoiceDataset(AISF_TRAIN_FILE, mel_spectrogram, device)
121
  train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
122
 
123
  # construct model
124
  model = CNNetwork().to(device)
125
  print(model)
126
+ print(train_dataset.label_mapping)
127
 
128
  # init loss function and optimizer
129
  loss_fn = nn.CrossEntropyLoss()
130
+ # optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
131
+ optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=0.9)
132
 
133
 
134
  # train model
135
  train(model, train_dataloader, loss_fn, optimizer, device, EPOCHS)
136
 
137
+ model.label_mapping = train_dataset.label_mapping
138
+
139
  # save model
140
  now = datetime.now()
141
  now = now.strftime("%Y%m%d_%H%M%S")
142
+ model_filename = f"models/aisf/void_{now}.pth"
143
  torch.save(model.state_dict(), model_filename)
144
  print(f"Trained void model saved at {model_filename}")