Spaces:
Build error
Build error
import torch | |
from torch import nn | |
from ldm.data.personalized import per_img_token_list | |
from transformers import CLIPTokenizer | |
from functools import partial | |
DEFAULT_PLACEHOLDER_TOKEN = ["*"] | |
PROGRESSIVE_SCALE = 2000 | |
def get_clip_token_for_string(tokenizer, string): | |
batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"] | |
assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string" | |
return tokens[0, 1] | |
def get_bert_token_for_string(tokenizer, string): | |
token = tokenizer(string) | |
assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string" | |
token = token[0, 1] | |
return token | |
def get_embedding_for_clip_token(embedder, token): | |
return embedder(token.unsqueeze(0))[0, 0] | |
class EmbeddingManager(nn.Module): | |
def __init__( | |
self, | |
embedder, | |
placeholder_strings=None, | |
initializer_words=None, | |
per_image_tokens=False, | |
num_vectors_per_token=1, | |
progressive_words=False, | |
**kwargs | |
): | |
super().__init__() | |
self.string_to_token_dict = {} | |
self.string_to_param_dict = nn.ParameterDict() | |
self.initial_embeddings = nn.ParameterDict() # These should not be optimized | |
self.progressive_words = progressive_words | |
self.progressive_counter = 0 | |
self.max_vectors_per_token = num_vectors_per_token | |
if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder | |
self.is_clip = True | |
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer) | |
get_embedding_for_tkn = partial(get_embedding_for_clip_token, embedder.transformer.text_model.embeddings) | |
token_dim = 768 | |
else: # using LDM's BERT encoder | |
self.is_clip = False | |
get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn) | |
get_embedding_for_tkn = embedder.transformer.token_emb | |
token_dim = 1280 | |
if per_image_tokens: | |
placeholder_strings.extend(per_img_token_list) | |
for idx, placeholder_string in enumerate(placeholder_strings): | |
token = get_token_for_string(placeholder_string) | |
if initializer_words and idx < len(initializer_words): | |
init_word_token = get_token_for_string(initializer_words[idx]) | |
with torch.no_grad(): | |
init_word_embedding = get_embedding_for_tkn(init_word_token.cpu()) | |
token_params = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=True) | |
self.initial_embeddings[placeholder_string] = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=False) | |
else: | |
token_params = torch.nn.Parameter(torch.rand(size=(num_vectors_per_token, token_dim), requires_grad=True)) | |
self.string_to_token_dict[placeholder_string] = token | |
self.string_to_param_dict[placeholder_string] = token_params | |
def forward( | |
self, | |
tokenized_text, | |
embedded_text, | |
): | |
b, n, device = *tokenized_text.shape, tokenized_text.device | |
for placeholder_string, placeholder_token in self.string_to_token_dict.items(): | |
placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device) | |
if self.max_vectors_per_token == 1: # If there's only one vector per token, we can do a simple replacement | |
placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device)) | |
embedded_text[placeholder_idx] = placeholder_embedding | |
else: # otherwise, need to insert and keep track of changing indices | |
if self.progressive_words: | |
self.progressive_counter += 1 | |
max_step_tokens = 1 + self.progressive_counter // PROGRESSIVE_SCALE | |
else: | |
max_step_tokens = self.max_vectors_per_token | |
num_vectors_for_token = min(placeholder_embedding.shape[0], max_step_tokens) | |
placeholder_rows, placeholder_cols = torch.where(tokenized_text == placeholder_token.to(device)) | |
if placeholder_rows.nelement() == 0: | |
continue | |
sorted_cols, sort_idx = torch.sort(placeholder_cols, descending=True) | |
sorted_rows = placeholder_rows[sort_idx] | |
for idx in range(len(sorted_rows)): | |
row = sorted_rows[idx] | |
col = sorted_cols[idx] | |
new_token_row = torch.cat([tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to(device), tokenized_text[row][col + 1:]], axis=0)[:n] | |
new_embed_row = torch.cat([embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1:]], axis=0)[:n] | |
embedded_text[row] = new_embed_row | |
tokenized_text[row] = new_token_row | |
return embedded_text | |
def save(self, ckpt_path): | |
torch.save({"string_to_token": self.string_to_token_dict, | |
"string_to_param": self.string_to_param_dict}, ckpt_path) | |
def load(self, ckpt_path): | |
ckpt = torch.load(ckpt_path, map_location='cpu') | |
self.string_to_token_dict = ckpt["string_to_token"] | |
self.string_to_param_dict = ckpt["string_to_param"] | |
def get_embedding_norms_squared(self): | |
all_params = torch.cat(list(self.string_to_param_dict.values()), axis=0) # num_placeholders x embedding_dim | |
param_norm_squared = (all_params * all_params).sum(axis=-1) # num_placeholders | |
return param_norm_squared | |
def embedding_parameters(self): | |
return self.string_to_param_dict.parameters() | |
def embedding_to_coarse_loss(self): | |
loss = 0. | |
num_embeddings = len(self.initial_embeddings) | |
for key in self.initial_embeddings: | |
optimized = self.string_to_param_dict[key] | |
coarse = self.initial_embeddings[key].clone().to(optimized.device) | |
loss = loss + (optimized - coarse) @ (optimized - coarse).T / num_embeddings | |
return loss |