Spaces:
Build error
Build error
import numpy as np | |
import torch | |
from my3d import unproject | |
def subpixel_rays_from_img(H, W, K, c2w_pose, normalize_dir=True, f=8): | |
assert c2w_pose[3, 3] == 1. | |
H, W = H * f, W * f | |
n = H * W | |
ys, xs = np.meshgrid(range(H), range(W), indexing="ij") | |
xy_coords = np.stack([xs, ys], axis=-1).reshape(n, 2) | |
top_left = np.array([-0.5, -0.5]) + 1 / (2 * f) | |
xy_coords = top_left + xy_coords / f | |
ro = c2w_pose[:, -1] | |
pts = unproject(K, xy_coords, depth=1) | |
pts = pts @ c2w_pose.T | |
rd = pts - ro | |
rd = rd[:, :3] | |
if normalize_dir: | |
rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True) | |
ro = np.tile(ro[:3], (n, 1)) | |
return ro, rd | |
def rays_from_img(H, W, K, c2w_pose, normalize_dir=True): | |
assert c2w_pose[3, 3] == 1. | |
n = H * W | |
ys, xs = np.meshgrid(range(H), range(W), indexing="ij") | |
xy_coords = np.stack([xs, ys], axis=-1).reshape(n, 2) | |
ro = c2w_pose[:, -1] | |
pts = unproject(K, xy_coords, depth=1) | |
pts = pts @ c2w_pose.T | |
rd = pts - ro # equivalently can subtract [0,0,0,1] before pose transform | |
rd = rd[:, :3] | |
if normalize_dir: | |
rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True) | |
ro = np.tile(ro[:3], (n, 1)) | |
return ro, rd | |
def ray_box_intersect(ro, rd, aabb): | |
""" | |
Intersection of ray with axis-aligned bounding box | |
This routine works for arbitrary dimensions; commonly d = 2 or 3 | |
only works for numpy, not torch (which has slightly diff api for min, max, and clone) | |
Args: | |
ro: [n, d] ray origin | |
rd: [n, d] ray direction (assumed to be already normalized; | |
if not still fine, meaning of t as time of flight holds true) | |
aabb: [d, 2] bbox bound on each dim | |
Return: | |
is_intersect: [n,] of bool, whether the particular ray intersects the bbox | |
t_min: [n,] ray entrance time | |
t_max: [n,] ray exit time | |
""" | |
n = ro.shape[0] | |
d = aabb.shape[0] | |
assert aabb.shape == (d, 2) | |
assert ro.shape == (n, d) and rd.shape == (n, d) | |
rd = rd.copy() | |
rd[rd == 0] = 1e-6 # avoid div overflow; logically safe to give it big t | |
ro = ro.reshape(n, d, 1) | |
rd = rd.reshape(n, d, 1) | |
ts = (aabb - ro) / rd # [n, d, 2] | |
t_min = ts.min(-1).max(-1) # [n,] last of entrance | |
t_max = ts.max(-1).min(-1) # [n,] first of exit | |
is_intersect = t_min < t_max | |
return is_intersect, t_min, t_max | |
def as_torch_tsrs(device, *args): | |
ret = [] | |
for elem in args: | |
target_dtype = torch.float32 if np.issubdtype(elem.dtype, np.floating) else None | |
ret.append( | |
torch.as_tensor(elem, dtype=target_dtype, device=device) | |
) | |
return ret | |
def group_mask_filter(mask, *items): | |
return [elem[mask] for elem in items] | |
def mask_back_fill(tsr, N, inds, base_value=1.0): | |
shape = [N, *tsr.shape[1:]] | |
canvas = base_value * np.ones_like(tsr, shape=shape) | |
canvas[inds] = tsr | |
return canvas | |
def render_one_view(model, aabb, H, W, K, pose): | |
N = H * W | |
bs = max(W * 5, 4096) # render 5 rows; original batch size 4096, now 4000; | |
ro, rd = rays_from_img(H, W, K, pose) | |
ro, rd, t_min, t_max, intsct_inds = scene_box_filter(ro, rd, aabb) | |
n = len(ro) | |
# print(f"{n} vs {N}") # n can be smaller than N since some rays do not intsct aabb | |
# n = n // 1 # actual number of rays to render; only needed for fast debugging | |
dev = model.device | |
ro, rd, t_min, t_max = as_torch_tsrs(dev, ro, rd, t_min, t_max) | |
rgbs = torch.zeros(n, 3, device=dev) | |
depth = torch.zeros(n, 1, device=dev) | |
with torch.no_grad(): | |
for i in range(int(np.ceil(n / bs))): | |
s = i * bs | |
e = min(n, s + bs) | |
_rgbs, _depth, _ = render_ray_bundle( | |
model, ro[s:e], rd[s:e], t_min[s:e], t_max[s:e] | |
) | |
rgbs[s:e] = _rgbs | |
depth[s:e] = _depth | |
rgbs, depth = rgbs.cpu().numpy(), depth.cpu().numpy() | |
base_color = 1.0 # empty region needs to be white | |
rgbs = mask_back_fill(rgbs, N, intsct_inds, base_color).reshape(H, W, 3) | |
depth = mask_back_fill(depth, N, intsct_inds, base_color).reshape(H, W) | |
return rgbs, depth | |
def scene_box_filter(ro, rd, aabb): | |
N = len(ro) | |
_, t_min, t_max = ray_box_intersect(ro, rd, aabb) | |
# do not render what's behind the ray origin | |
t_min, t_max = np.maximum(t_min, 0), np.maximum(t_max, 0) | |
# can test intersect logic by reducing the focal length | |
is_intsct = t_min < t_max | |
ro, rd, t_min, t_max = group_mask_filter(is_intsct, ro, rd, t_min, t_max) | |
intsct_inds = np.arange(N)[is_intsct] | |
return ro, rd, t_min, t_max, intsct_inds | |
def render_ray_bundle(model, ro, rd, t_min, t_max): | |
""" | |
The working shape is (k, n, 3) where k is num of samples per ray, n the ray batch size | |
During integration the reduction is applied on k | |
chain of filtering | |
starting with ro, rd (from cameras), and a scene bbox | |
- rays that do not intersect scene bbox; sample pts that fall outside the bbox | |
- samples that do not fall within alpha mask | |
- samples whose densities are very low; no need to compute colors on them | |
""" | |
num_samples, step_size = model.get_num_samples((t_max - t_min).max()) | |
n, k = len(ro), num_samples | |
ticks = step_size * torch.arange(k, device=ro.device) | |
ticks = ticks.view(k, 1, 1) | |
t_min = t_min.view(n, 1) | |
# t_min = t_min + step_size * torch.rand_like(t_min) # NOTE seems useless | |
t_max = t_max.view(n, 1) | |
dists = t_min + ticks # [n, 1], [k, 1, 1] -> [k, n, 1] | |
pts = ro + rd * dists # [n, 3], [n, 3], [k, n, 1] -> [k, n, 3] | |
mask = (ticks < (t_max - t_min)).squeeze(-1) # [k, 1, 1], [n, 1] -> [k, n, 1] -> [k, n] | |
smp_pts = pts[mask] | |
if model.alphaMask is not None: | |
alphas = model.alphaMask.sample_alpha(smp_pts) | |
alpha_mask = alphas > 0 | |
mask[mask.clone()] = alpha_mask | |
smp_pts = pts[mask] | |
σ = torch.zeros(k, n, device=ro.device) | |
σ[mask] = model.compute_density_feats(smp_pts) | |
weights = volume_rend_weights(σ, step_size) | |
mask = weights > model.ray_march_weight_thres | |
smp_pts = pts[mask] | |
app_feats = model.compute_app_feats(smp_pts) | |
# viewdirs = rd.view(1, n, 3).expand(k, n, 3)[mask] # ray dirs for each point | |
# additional wild factors here as in nerf-w; wild factors are optimizable | |
c_dim = app_feats.shape[-1] | |
colors = torch.zeros(k, n, c_dim, device=ro.device) | |
colors[mask] = model.feats2color(app_feats) | |
weights = weights.view(k, n, 1) # can be used to compute other expected vals e.g. depth | |
bg_weight = 1. - weights.sum(dim=0) # [n, 1] | |
rgbs = (weights * colors).sum(dim=0) # [n, 3] | |
if model.blend_bg_texture: | |
uv = spherical_xyz_to_uv(rd) | |
bg_feats = model.compute_bg(uv) | |
bg_color = model.feats2color(bg_feats) | |
rgbs = rgbs + bg_weight * bg_color | |
else: | |
rgbs = rgbs + bg_weight * 1. # blend white bg color | |
# rgbs = rgbs.clamp(0, 1) # don't clamp since this is can be SD latent features | |
E_dists = (weights * dists).sum(dim=0) | |
bg_dist = 10. # blend bg distance; just don't make it too large | |
E_dists = E_dists + bg_weight * bg_dist | |
return rgbs, E_dists, weights.squeeze(-1) | |
def spherical_xyz_to_uv(xyz): | |
# xyz is Tensor of shape [N, 3], uv in [-1, 1] | |
x, y, z = xyz.t() # [N] | |
xy = (x ** 2 + y ** 2) ** 0.5 | |
u = torch.atan2(xy, z) / torch.pi # [N] | |
v = torch.atan2(y, x) / (torch.pi * 2) + 0.5 # [N] | |
uv = torch.stack([u, v], -1) # [N, 2] | |
uv = uv * 2 - 1 # [0, 1] -> [-1, 1] | |
return uv | |
def volume_rend_weights(σ, dist): | |
α = 1 - torch.exp(-σ * dist) | |
T = torch.ones_like(α) | |
T[1:] = (1 - α).cumprod(dim=0)[:-1] | |
assert (T >= 0).all() | |
weights = α * T | |
return weights | |