Spaces:
Runtime error
Runtime error
import pandas as pd | |
from transformers import AutoTokenizer | |
from langchain.docstore.document import Document | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores.utils import DistanceStrategy | |
from tqdm import tqdm | |
from transformers.agents import Tool, HfApiEngine, ReactJsonAgent | |
from huggingface_hub import InferenceClient | |
import os | |
from langchain_community.document_loaders import DirectoryLoader | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_groq import ChatGroq | |
from groq import Groq | |
from typing import List, Dict | |
from transformers.agents.llm_engine import MessageRole, get_clean_message_list | |
from huggingface_hub import InferenceClient | |
import streamlit as st | |
token = os.getenv("HF_TOKEN") | |
os.environ["GROQ_API_KEY"] = "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" | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
# model_id="mistralai/Mistral-7B-Instruct-v0.3" | |
loader = DirectoryLoader('DATA', glob="**/*.pdf", show_progress=True) | |
docs = loader.load() | |
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small") | |
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer( | |
tokenizer, | |
chunk_size=200, | |
chunk_overlap=20, | |
add_start_index=True, | |
strip_whitespace=True, | |
separators=["\n\n", "\n", ".", " ", ""], | |
) | |
# Split documents and remove duplicates | |
docs_processed = [] | |
unique_texts = {} | |
for doc in tqdm(docs): | |
new_docs = text_splitter.split_documents([doc]) | |
for new_doc in new_docs: | |
if new_doc.page_content not in unique_texts: | |
unique_texts[new_doc.page_content] = True | |
docs_processed.append(new_doc) | |
model_name = "thenlper/gte-small" | |
model_kwargs = {'device': 'cpu'} | |
encode_kwargs = {'normalize_embeddings': False} | |
embedding_model = HuggingFaceEmbeddings( | |
model_name=model_name, | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
# Create the vector database | |
vectordb = FAISS.from_documents( | |
documents=docs_processed, | |
embedding=embedding_model, | |
distance_strategy=DistanceStrategy.COSINE, | |
) | |
class RetrieverTool(Tool): | |
name = "retriever" | |
description = "Using semantic similarity, retrieves some documents from the knowledge base that have the closest embeddings to the input query." | |
inputs = { | |
"query": { | |
"type": "string", | |
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.", | |
} | |
} | |
output_type = "string" | |
def __init__(self, vectordb, **kwargs): | |
super().__init__(**kwargs) | |
self.vectordb = vectordb | |
def forward(self, query: str) -> str: | |
assert isinstance(query, str), "Your search query must be a string" | |
docs = self.vectordb.similarity_search( | |
query, | |
k=7, | |
) | |
return "\nRetrieved documents:\n" + "".join( | |
[f"===== Document {str(i)} =====\n" + doc.page_content for i, doc in enumerate(docs)] | |
) | |
# Create an instance of the RetrieverTool | |
retriever_tool = RetrieverTool(vectordb) | |
llm = ChatGroq( | |
model="llama3-70b-8192", | |
temperature=0, | |
max_tokens=2048, | |
) | |
openai_role_conversions = { | |
MessageRole.TOOL_RESPONSE: MessageRole.USER, | |
} | |
class OpenAIEngine: | |
def __init__(self, model_name="llama-3.3-70b-versatile"): | |
print(groq_api_key) | |
self.model_name = model_name | |
self.client = Groq( | |
api_key=groq_api_key, | |
) | |
def __call__(self, messages, stop_sequences=[]): | |
messages = get_clean_message_list(messages, role_conversions=openai_role_conversions) | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=messages, | |
stop=stop_sequences, | |
temperature=0.5, | |
max_tokens=2048 | |
) | |
return response.choices[0].message.content | |
llm_engine = OpenAIEngine() | |
# Create the agent | |
agent = ReactJsonAgent(tools=[retriever_tool], llm_engine=llm_engine, max_iterations=4, verbose=2) | |
# Function to run the agent | |
def run_agentic_rag(question: str) -> str: | |
enhanced_question = f"""Using the information contained in your knowledge base, which you can access with the 'retriever' tool, | |
give a comprehensive answer to the question below. | |
Respond only to the question asked, response should be concise and relevant to the question. | |
If you cannot find information, do not give up and try calling your retriever again with different arguments! | |
Make sure to have covered the question completely by calling the retriever tool several times with semantically different queries. | |
Your queries should not be questions but affirmative form sentences: e.g. rather than "How do I load a model from the Hub in bf16?", query should be "load a model from the Hub bf16 weights". | |
Question: | |
{question}""" | |
return agent.run(enhanced_question) | |
# def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1): | |
# """ | |
# Returns a language model for HuggingFace inference. | |
# Parameters: | |
# - model_id (str): The ID of the HuggingFace model repository. | |
# - max_new_tokens (int): The maximum number of new tokens to generate. | |
# - temperature (float): The temperature for sampling from the model. | |
# Returns: | |
# - llm (HuggingFaceEndpoint): The language model for HuggingFace inference. | |
# """ | |
# llm = HuggingFaceEndpoint( | |
# repo_id=model_id, | |
# max_new_tokens=max_new_tokens, | |
# temperature=temperature, | |
# token = os.getenv("HF_TOKEN") | |
# ) | |
# return llm | |
def get_response(chat_history, user_text): | |
""" | |
Generates a response from the chatbot model. | |
Args: | |
system_message (str): The system message for the conversation. | |
chat_history (list): The list of previous chat messages. | |
user_text (str): The user's input text. | |
model_id (str, optional): The ID of the HuggingFace model to use. | |
eos_token_id (list, optional): The list of end-of-sentence token IDs. | |
max_new_tokens (int, optional): The maximum number of new tokens to generate. | |
get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function. | |
Returns: | |
tuple: A tuple containing the generated response and the updated chat history. | |
""" | |
# Update the chat history | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': run_agentic_rag(user_text)}) | |
return run_agentic_rag(user_text), chat_history | |
st.set_page_config(page_title="Hi, I am Telto assistant", page_icon="🤗") | |
st.title("Telto Support") | |
st.markdown(f"*This is telto assistant. For any guidance on how to use Telto, feel free to ask me.*") | |
# Initialize session state for avatars | |
if "avatars" not in st.session_state: | |
st.session_state.avatars = {'user': None, 'assistant': None} | |
# Initialize session state for user text input | |
if 'user_text' not in st.session_state: | |
st.session_state.user_text = None | |
if "system_message" not in st.session_state: | |
st.session_state.system_message = "friendly AI conversing with a human user" | |
if "starter_message" not in st.session_state: | |
st.session_state.starter_message = "Hello, there! How can I help you today?" | |
# Sidebar for settings | |
with st.sidebar: | |
st.header("System Settings") | |
# Avatar Selection | |
st.markdown("*Select Avatars:*") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.session_state.avatars['assistant'] = st.selectbox( | |
"AI Avatar", options=["🤗", "💬", "🤖"], index=0 | |
) | |
with col2: | |
st.session_state.avatars['user'] = st.selectbox( | |
"User Avatar", options=["👤", "👱♂️", "👨🏾", "👩", "👧🏾"], index=0 | |
) | |
# Reset Chat History | |
reset_history = st.button("Reset Chat History") | |
# Initialize or reset chat history | |
if "chat_history" not in st.session_state or reset_history: | |
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}] | |
# Chat interface | |
chat_interface = st.container(border=True) | |
with chat_interface: | |
output_container = st.container() | |
st.session_state.user_text = st.chat_input(placeholder="Enter your text here.") | |
# Display chat messages | |
with output_container: | |
# For every message in the history | |
for message in st.session_state.chat_history: | |
# Skip the system message | |
if message['role'] == 'system': | |
continue | |
# Display the chat message using the correct avatar | |
with st.chat_message(message['role'], | |
avatar=st.session_state['avatars'][message['role']]): | |
st.markdown(message['content']) | |
# When the user enter new text: | |
if st.session_state.user_text: | |
# Display the user's new message immediately | |
with st.chat_message("user", | |
avatar=st.session_state.avatars['user']): | |
st.markdown(st.session_state.user_text) | |
# Display a spinner status bar while waiting for the response | |
with st.chat_message("assistant", | |
avatar=st.session_state.avatars['assistant']): | |
with st.spinner("Thinking..."): | |
# Call the Inference API with the system_prompt, user text, and history | |
response, st.session_state.chat_history = get_response( | |
user_text=st.session_state.user_text, | |
chat_history=st.session_state.chat_history, | |
) | |
st.markdown(response) | |