Spaces:
Sleeping
Sleeping
Add Groq AI integration for real NL2SQL functionality
Browse files- Integrated Groq AI (Mixtral-8x7b-32768) for SQL generation
- Added generate_sql_with_groq() function
- Added explain_sql_with_groq() for query explanations
- Replaced hardcoded demo responses with real AI-generated SQL
- Ready to process natural language questions dynamically
- Requires GROQ_API_KEY to be set in HF Spaces secrets
main.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
"""FastAPI Backend for OpenNL2SQL
|
| 2 |
-
Author: Amal SP
|
| 3 |
Created: December 2025
|
| 4 |
"""
|
| 5 |
|
|
@@ -9,6 +9,8 @@ from pydantic import BaseModel
|
|
| 9 |
from typing import Optional, List, Dict, Any
|
| 10 |
import os
|
| 11 |
import logging
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Configure logging
|
| 14 |
logging.basicConfig(
|
|
@@ -33,6 +35,15 @@ app.add_middleware(
|
|
| 33 |
allow_headers=["*"],
|
| 34 |
)
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# Request/Response Models
|
| 37 |
class QueryRequest(BaseModel):
|
| 38 |
question: str
|
|
@@ -47,6 +58,70 @@ class QueryResponse(BaseModel):
|
|
| 47 |
error: Optional[str] = None
|
| 48 |
session_id: str
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
@app.get("/")
|
| 51 |
async def root():
|
| 52 |
"""Health check endpoint"""
|
|
@@ -54,7 +129,8 @@ async def root():
|
|
| 54 |
"status": "healthy",
|
| 55 |
"service": "OpenNL2SQL API",
|
| 56 |
"version": "1.0.0",
|
| 57 |
-
"message": "FastAPI backend
|
|
|
|
| 58 |
}
|
| 59 |
|
| 60 |
@app.get("/health")
|
|
@@ -62,25 +138,60 @@ async def health_check():
|
|
| 62 |
"""Detailed health check"""
|
| 63 |
return {
|
| 64 |
"status": "healthy",
|
| 65 |
-
"groq_api_configured":
|
| 66 |
"service": "OpenNL2SQL API"
|
| 67 |
}
|
| 68 |
|
| 69 |
@app.post("/query", response_model=QueryResponse)
|
| 70 |
async def process_query(request: QueryRequest):
|
| 71 |
-
"""Process natural language query"""
|
| 72 |
-
# For now, return a placeholder response
|
| 73 |
-
# This will be integrated with GROQ API and full backend logic
|
| 74 |
session_id = request.session_id or "demo-session"
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
if __name__ == "__main__":
|
| 86 |
import uvicorn
|
|
|
|
| 1 |
+
"""FastAPI Backend for OpenNL2SQL with Groq AI Integration
|
| 2 |
+
Author: Amal SP
|
| 3 |
Created: December 2025
|
| 4 |
"""
|
| 5 |
|
|
|
|
| 9 |
from typing import Optional, List, Dict, Any
|
| 10 |
import os
|
| 11 |
import logging
|
| 12 |
+
from groq import Groq
|
| 13 |
+
import json
|
| 14 |
|
| 15 |
# Configure logging
|
| 16 |
logging.basicConfig(
|
|
|
|
| 35 |
allow_headers=["*"],
|
| 36 |
)
|
| 37 |
|
| 38 |
+
# Initialize Groq client
|
| 39 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 40 |
+
if GROQ_API_KEY:
|
| 41 |
+
groq_client = Groq(api_key=GROQ_API_KEY)
|
| 42 |
+
logger.info("Groq client initialized successfully")
|
| 43 |
+
else:
|
| 44 |
+
groq_client = None
|
| 45 |
+
logger.warning("GROQ_API_KEY not found - running in demo mode")
|
| 46 |
+
|
| 47 |
# Request/Response Models
|
| 48 |
class QueryRequest(BaseModel):
|
| 49 |
question: str
|
|
|
|
| 58 |
error: Optional[str] = None
|
| 59 |
session_id: str
|
| 60 |
|
| 61 |
+
def generate_sql_with_groq(question: str) -> tuple:
|
| 62 |
+
"""Generate SQL using Groq AI"""
|
| 63 |
+
try:
|
| 64 |
+
# Sample database schema
|
| 65 |
+
schema = """
|
| 66 |
+
Database Schema:
|
| 67 |
+
- customers (id, name, email, created_at)
|
| 68 |
+
- orders (id, customer_id, total, status, created_at)
|
| 69 |
+
- products (id, name, price, category)
|
| 70 |
+
- order_items (id, order_id, product_id, quantity, price)
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
prompt = f"""{schema}
|
| 74 |
+
|
| 75 |
+
Convert this natural language question to a SQL query:
|
| 76 |
+
Question: {question}
|
| 77 |
+
|
| 78 |
+
Generate ONLY a valid SELECT SQL query. No explanations.
|
| 79 |
+
SQL Query:"""
|
| 80 |
+
|
| 81 |
+
response = groq_client.chat.completions.create(
|
| 82 |
+
model="mixtral-8x7b-32768",
|
| 83 |
+
messages=[
|
| 84 |
+
{"role": "system", "content": "You are a SQL expert. Generate only valid SQL SELECT queries without any explanations or markdown formatting."},
|
| 85 |
+
{"role": "user", "content": prompt}
|
| 86 |
+
],
|
| 87 |
+
temperature=0.2,
|
| 88 |
+
max_tokens=500
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
sql = response.choices[0].message.content.strip()
|
| 92 |
+
# Clean up the SQL
|
| 93 |
+
sql = sql.replace("```sql", "").replace("```", "").strip()
|
| 94 |
+
|
| 95 |
+
return sql, None
|
| 96 |
+
except Exception as e:
|
| 97 |
+
logger.error(f"Error generating SQL: {str(e)}")
|
| 98 |
+
return None, str(e)
|
| 99 |
+
|
| 100 |
+
def explain_sql_with_groq(sql: str, question: str) -> str:
|
| 101 |
+
"""Generate explanation for SQL query"""
|
| 102 |
+
try:
|
| 103 |
+
prompt = f"""Explain this SQL query in simple terms:
|
| 104 |
+
|
| 105 |
+
Original Question: {question}
|
| 106 |
+
SQL Query: {sql}
|
| 107 |
+
|
| 108 |
+
Provide a brief, clear explanation:"""
|
| 109 |
+
|
| 110 |
+
response = groq_client.chat.completions.create(
|
| 111 |
+
model="mixtral-8x7b-32768",
|
| 112 |
+
messages=[
|
| 113 |
+
{"role": "system", "content": "You are a helpful assistant that explains SQL queries in simple terms."},
|
| 114 |
+
{"role": "user", "content": prompt}
|
| 115 |
+
],
|
| 116 |
+
temperature=0.3,
|
| 117 |
+
max_tokens=300
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
return response.choices[0].message.content.strip()
|
| 121 |
+
except Exception as e:
|
| 122 |
+
logger.error(f"Error explaining SQL: {str(e)}")
|
| 123 |
+
return "SQL query generated successfully."
|
| 124 |
+
|
| 125 |
@app.get("/")
|
| 126 |
async def root():
|
| 127 |
"""Health check endpoint"""
|
|
|
|
| 129 |
"status": "healthy",
|
| 130 |
"service": "OpenNL2SQL API",
|
| 131 |
"version": "1.0.0",
|
| 132 |
+
"message": "FastAPI backend with Groq AI integration running on Hugging Face Spaces!",
|
| 133 |
+
"groq_enabled": groq_client is not None
|
| 134 |
}
|
| 135 |
|
| 136 |
@app.get("/health")
|
|
|
|
| 138 |
"""Detailed health check"""
|
| 139 |
return {
|
| 140 |
"status": "healthy",
|
| 141 |
+
"groq_api_configured": groq_client is not None,
|
| 142 |
"service": "OpenNL2SQL API"
|
| 143 |
}
|
| 144 |
|
| 145 |
@app.post("/query", response_model=QueryResponse)
|
| 146 |
async def process_query(request: QueryRequest):
|
| 147 |
+
"""Process natural language query with Groq AI"""
|
|
|
|
|
|
|
| 148 |
session_id = request.session_id or "demo-session"
|
| 149 |
|
| 150 |
+
# Check if Groq is available
|
| 151 |
+
if not groq_client:
|
| 152 |
+
return QueryResponse(
|
| 153 |
+
success=False,
|
| 154 |
+
error="GROQ_API_KEY not configured. Please add it in HF Spaces Settings > Variables.",
|
| 155 |
+
session_id=session_id
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
try:
|
| 159 |
+
# Generate SQL using Groq
|
| 160 |
+
sql, error = generate_sql_with_groq(request.question)
|
| 161 |
+
|
| 162 |
+
if error:
|
| 163 |
+
return QueryResponse(
|
| 164 |
+
success=False,
|
| 165 |
+
error=f"Failed to generate SQL: {error}",
|
| 166 |
+
session_id=session_id
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# Generate explanation
|
| 170 |
+
explanation = explain_sql_with_groq(sql, request.question)
|
| 171 |
+
|
| 172 |
+
# For demo: return mock results
|
| 173 |
+
# In production, you'd execute the SQL against a real database
|
| 174 |
+
results = [
|
| 175 |
+
{"info": "SQL generated successfully! In production, this would execute against your database."},
|
| 176 |
+
{"note": "Connect your database to see real query results."}
|
| 177 |
+
]
|
| 178 |
+
|
| 179 |
+
return QueryResponse(
|
| 180 |
+
success=True,
|
| 181 |
+
sql=sql,
|
| 182 |
+
results=results,
|
| 183 |
+
sql_explanation=explanation,
|
| 184 |
+
results_explanation=f"Generated SQL query for: '{request.question}'. Ready to execute against your database.",
|
| 185 |
+
session_id=session_id
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
except Exception as e:
|
| 189 |
+
logger.error(f"Error processing query: {str(e)}")
|
| 190 |
+
return QueryResponse(
|
| 191 |
+
success=False,
|
| 192 |
+
error=f"Error: {str(e)}",
|
| 193 |
+
session_id=session_id
|
| 194 |
+
)
|
| 195 |
|
| 196 |
if __name__ == "__main__":
|
| 197 |
import uvicorn
|