Update app/spark.py
Browse files- app/spark.py +25 -10
app/spark.py
CHANGED
|
@@ -23,17 +23,25 @@ from chainlit import on_message, on_chat_start
|
|
| 23 |
import openai
|
| 24 |
from langchain.callbacks import ContextCallbackHandler
|
| 25 |
from promptwatch import PromptWatch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
-
index_name = "
|
| 29 |
|
| 30 |
spark = load_spark_prompt()
|
| 31 |
query_gen_prompt = load_query_gen_prompt()
|
| 32 |
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(query_gen_prompt)
|
| 33 |
-
pinecone.init(
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
@on_chat_start
|
| 38 |
def init():
|
| 39 |
token = os.environ["CONTEXT_TOKEN"]
|
|
@@ -43,12 +51,19 @@ def init():
|
|
| 43 |
llm = ChatOpenAI(temperature=0.7, verbose=True, openai_api_key = os.environ.get("OPENAI_API_KEY"), streaming=True,
|
| 44 |
callbacks=[context_callback])
|
| 45 |
memory = ConversationTokenBufferMemory(llm=llm,memory_key="chat_history", return_messages=True,input_key='question',max_token_limit=1000)
|
| 46 |
-
embeddings = CohereEmbeddings(model='embed-english-light-v2.0',cohere_api_key=os.environ.get("COHERE_API_KEY"))
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
# compressor = CohereRerank()
|
| 53 |
# reranker = ContextualCompressionRetriever(
|
| 54 |
# base_compressor=compressor, base_retriever=retriever
|
|
|
|
| 23 |
import openai
|
| 24 |
from langchain.callbacks import ContextCallbackHandler
|
| 25 |
from promptwatch import PromptWatch
|
| 26 |
+
import os
|
| 27 |
+
from pinecone import Pinecone, ServerlessSpec
|
| 28 |
+
from langchain_openai import OpenAIEmbeddings
|
| 29 |
+
from langchain_pinecone import PineconeVectorStore
|
| 30 |
+
|
| 31 |
+
pc = Pinecone(
|
| 32 |
+
api_key=os.environ.get("PINECONE_API_KEY")
|
| 33 |
+
)
|
| 34 |
|
| 35 |
|
| 36 |
+
index_name = "sparklearn"
|
| 37 |
|
| 38 |
spark = load_spark_prompt()
|
| 39 |
query_gen_prompt = load_query_gen_prompt()
|
| 40 |
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(query_gen_prompt)
|
| 41 |
+
# pinecone.init(
|
| 42 |
+
# api_key=os.environ.get("PINECONE_API_KEY"),
|
| 43 |
+
# environment='us-west1-gcp',
|
| 44 |
+
# )
|
| 45 |
@on_chat_start
|
| 46 |
def init():
|
| 47 |
token = os.environ["CONTEXT_TOKEN"]
|
|
|
|
| 51 |
llm = ChatOpenAI(temperature=0.7, verbose=True, openai_api_key = os.environ.get("OPENAI_API_KEY"), streaming=True,
|
| 52 |
callbacks=[context_callback])
|
| 53 |
memory = ConversationTokenBufferMemory(llm=llm,memory_key="chat_history", return_messages=True,input_key='question',max_token_limit=1000)
|
| 54 |
+
# embeddings = CohereEmbeddings(model='embed-english-light-v2.0',cohere_api_key=os.environ.get("COHERE_API_KEY"))
|
| 55 |
+
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
| 56 |
+
index = pc.Index(index_name)
|
| 57 |
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# docsearch = Pinecone.from_existing_index(
|
| 61 |
+
# index_name=index_name, embedding=embeddings
|
| 62 |
+
# )
|
| 63 |
+
vector_store = PineconeVectorStore(index=index, embedding=embeddings)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 4}, search_type="similarity_score_threshold")
|
| 67 |
# compressor = CohereRerank()
|
| 68 |
# reranker = ContextualCompressionRetriever(
|
| 69 |
# base_compressor=compressor, base_retriever=retriever
|