amagastya commited on
Commit
c0b3215
·
verified ·
1 Parent(s): 75a61b3

Update app/spark.py

Browse files
Files changed (1) hide show
  1. app/spark.py +25 -10
app/spark.py CHANGED
@@ -23,17 +23,25 @@ from chainlit import on_message, on_chat_start
23
  import openai
24
  from langchain.callbacks import ContextCallbackHandler
25
  from promptwatch import PromptWatch
 
 
 
 
 
 
 
 
26
 
27
 
28
- index_name = "spark"
29
 
30
  spark = load_spark_prompt()
31
  query_gen_prompt = load_query_gen_prompt()
32
  CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(query_gen_prompt)
33
- pinecone.init(
34
- api_key=os.environ.get("PINECONE_API_KEY"),
35
- environment='us-west1-gcp',
36
- )
37
  @on_chat_start
38
  def init():
39
  token = os.environ["CONTEXT_TOKEN"]
@@ -43,12 +51,19 @@ def init():
43
  llm = ChatOpenAI(temperature=0.7, verbose=True, openai_api_key = os.environ.get("OPENAI_API_KEY"), streaming=True,
44
  callbacks=[context_callback])
45
  memory = ConversationTokenBufferMemory(llm=llm,memory_key="chat_history", return_messages=True,input_key='question',max_token_limit=1000)
46
- embeddings = CohereEmbeddings(model='embed-english-light-v2.0',cohere_api_key=os.environ.get("COHERE_API_KEY"))
 
 
47
 
48
- docsearch = Pinecone.from_existing_index(
49
- index_name=index_name, embedding=embeddings
50
- )
51
- retriever = docsearch.as_retriever(search_kwargs={"k": 4})
 
 
 
 
 
52
  # compressor = CohereRerank()
53
  # reranker = ContextualCompressionRetriever(
54
  # base_compressor=compressor, base_retriever=retriever
 
23
  import openai
24
  from langchain.callbacks import ContextCallbackHandler
25
  from promptwatch import PromptWatch
26
+ import os
27
+ from pinecone import Pinecone, ServerlessSpec
28
+ from langchain_openai import OpenAIEmbeddings
29
+ from langchain_pinecone import PineconeVectorStore
30
+
31
+ pc = Pinecone(
32
+ api_key=os.environ.get("PINECONE_API_KEY")
33
+ )
34
 
35
 
36
+ index_name = "sparklearn"
37
 
38
  spark = load_spark_prompt()
39
  query_gen_prompt = load_query_gen_prompt()
40
  CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(query_gen_prompt)
41
+ # pinecone.init(
42
+ # api_key=os.environ.get("PINECONE_API_KEY"),
43
+ # environment='us-west1-gcp',
44
+ # )
45
  @on_chat_start
46
  def init():
47
  token = os.environ["CONTEXT_TOKEN"]
 
51
  llm = ChatOpenAI(temperature=0.7, verbose=True, openai_api_key = os.environ.get("OPENAI_API_KEY"), streaming=True,
52
  callbacks=[context_callback])
53
  memory = ConversationTokenBufferMemory(llm=llm,memory_key="chat_history", return_messages=True,input_key='question',max_token_limit=1000)
54
+ # embeddings = CohereEmbeddings(model='embed-english-light-v2.0',cohere_api_key=os.environ.get("COHERE_API_KEY"))
55
+ embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
56
+ index = pc.Index(index_name)
57
 
58
+
59
+
60
+ # docsearch = Pinecone.from_existing_index(
61
+ # index_name=index_name, embedding=embeddings
62
+ # )
63
+ vector_store = PineconeVectorStore(index=index, embedding=embeddings)
64
+
65
+
66
+ retriever = vector_store.as_retriever(search_kwargs={"k": 4}, search_type="similarity_score_threshold")
67
  # compressor = CohereRerank()
68
  # reranker = ContextualCompressionRetriever(
69
  # base_compressor=compressor, base_retriever=retriever