Spaces:
Sleeping
Sleeping
import torch as th | |
class Normalize(object): | |
def __init__(self, mean, std): | |
self.mean = th.FloatTensor(mean).view(1, 3, 1, 1) | |
self.std = th.FloatTensor(std).view(1, 3, 1, 1) | |
def __call__(self, tensor): | |
tensor = (tensor - self.mean) / (self.std + 1e-8) | |
return tensor | |
class Preprocessing(object): | |
def __init__(self, type): | |
self.type = type | |
if type == '2d': | |
self.norm = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
elif type == '3d': | |
self.norm = Normalize(mean=[110.6, 103.2, 96.3], std=[1.0, 1.0, 1.0]) | |
def _zero_pad(self, tensor, size): | |
n = size - len(tensor) % size | |
if n == size: | |
return tensor | |
else: | |
z = th.zeros(n, tensor.shape[1], tensor.shape[2], tensor.shape[3]) | |
return th.cat((tensor, z), 0) | |
def __call__(self, tensor): | |
if self.type == '2d': | |
tensor = tensor / 255.0 | |
tensor = self.norm(tensor) | |
elif self.type == '3d': | |
tensor = self._zero_pad(tensor, 16) | |
tensor = self.norm(tensor) | |
tensor = tensor.view(-1, 16, 3, 112, 112) | |
tensor = tensor.transpose(1, 2) | |
return tensor | |