annabeth97c's picture
Initial commit
12f2e48 verified
from dataclasses import dataclass, field
import logging
from flask import Flask, request, jsonify
import transformers
import torch
from multi_token.model_utils import MultiTaskType
from multi_token.training import (
ModelArguments,
)
from multi_token.inference import load_trained_lora_model
from multi_token.data_tools import encode_chat
@dataclass
class ServeArguments(ModelArguments):
port: int = field(default=8080)
host: str = field(default="0.0.0.0")
load_bits: int = field(default=16)
max_new_tokens: int = field(default=128)
temperature: float = field(default=0.01)
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
parser = transformers.HfArgumentParser((ServeArguments,))
serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True)
model, tokenizer = load_trained_lora_model(
model_name_or_path=serve_args.model_name_or_path,
model_lora_path=serve_args.model_lora_path,
load_bits=serve_args.load_bits,
use_multi_task=MultiTaskType(serve_args.use_multi_task),
tasks_config=serve_args.tasks_config
)
app = Flask(__name__)
@app.route("/generate", methods=["POST"])
def generate():
req_json = request.get_json()
encoded_dict = encode_chat(req_json, tokenizer, model.modalities)
with torch.inference_mode():
output_ids = model.generate(
input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device),
max_new_tokens=serve_args.max_new_tokens,
use_cache=True,
do_sample=True,
temperature=serve_args.temperature,
modality_inputs={
m.name: [encoded_dict[m.name]] for m in model.modalities
},
)
outputs = tokenizer.decode(
output_ids[0, encoded_dict["input_ids"].shape[0] :],
skip_special_tokens=True,
).strip()
return jsonify({"output": outputs})
app.run(host=serve_args.host, port=serve_args.port)