Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, field | |
import logging | |
from flask import Flask, request, jsonify | |
import transformers | |
import torch | |
from datasets import load_from_disk | |
from multi_token.model_utils import MultiTaskType | |
from multi_token.training import ModelArguments | |
from multi_token.inference import load_trained_lora_model | |
from multi_token.data_tools import encode_chat | |
import evaluate | |
import random | |
import bert_score | |
PRETRAIN_PHRASES = [ | |
"What is happening in the given music <sound>?", | |
"Describe the sound. <sound>", | |
"Describe the music. <sound>", | |
"<sound> Provide a description of the music.", | |
"<sound> Provide a description of the sound.", | |
"Can you interpret <sound>?", | |
"Please explain what's happening in <sound>", | |
"What does <sound> represent?", | |
"Could you describe <sound> for me?", | |
"What's the content of <sound>?", | |
"Can you depict <sound>?", | |
"What is <sound>?", | |
"In the music clip, <sound>, what is happening?", | |
"Provide a description of the music. <sound>", | |
"Provide a description of the sound. <sound>", | |
"Provide a caption for the sound. <sound>", | |
"Provide a caption for the music. <sound>", | |
] | |
class ServeArguments(ModelArguments): | |
port: int = field(default=8080) | |
host: str = field(default="0.0.0.0") | |
load_bits: int = field(default=16) | |
max_new_tokens: int = field(default=128) | |
temperature: float = field(default=0.01) | |
def generate(input_json): | |
encoded_dict = encode_chat(input_json, tokenizer, model.modalities) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device), | |
max_new_tokens=serve_args.max_new_tokens, | |
use_cache=True, | |
do_sample=True, | |
temperature=serve_args.temperature, | |
modality_inputs={ | |
m.name: [encoded_dict[m.name]] for m in model.modalities | |
}, | |
) | |
outputs = tokenizer.decode( | |
output_ids[0, encoded_dict["input_ids"].shape[0]:], | |
skip_special_tokens=True, | |
).strip() | |
return {"output": outputs} | |
if __name__ == "__main__": | |
logging.getLogger().setLevel(logging.INFO) | |
parser = transformers.HfArgumentParser((ServeArguments,)) | |
serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True) | |
dataset_path = "/data/musicbench_multitoken_official_split/val" | |
ds = load_from_disk(dataset_path) | |
# Load MU-LLaMA model and tokenizer | |
model_name_or_path = "mu-llama/MU-LLaMA" | |
model = transformers.LlamaForCausalLM.from_pretrained(model_name_or_path) | |
tokenizer = transformers.LlamaTokenizer.from_pretrained(model_name_or_path) | |
predictions = [] | |
references = [] | |
content_phrase = random.choice(PRETRAIN_PHRASES) | |
for data_point_id in range(100): | |
data_point = ds[data_point_id] | |
input_json = {"messages": [{"role": "user", "content": content_phrase}], "sounds": data_point["sounds"]} | |
output_json = generate(input_json) | |
print("Prediction ", output_json["output"]) | |
print("Reference ", data_point["messages"][1]["content"]) | |
print() | |
print() | |
predictions.append(output_json["output"]) | |
references.append(data_point["messages"][1]["content"]) | |
# Load evaluation metrics | |
bleu = evaluate.load("bleu") | |
meteor = evaluate.load("meteor") | |
rouge = evaluate.load("rouge") | |
# Compute BLEU scores | |
bleu_results = bleu.compute(predictions=predictions, references=references, max_order=4) | |
# bleu_score = sum(bleu_results[f"bleu{i}"] for i in range(1, 5)) / 4 | |
print(bleu_results) | |
# Compute METEOR score | |
meteor_results = meteor.compute(predictions=predictions, references=references) | |
meteor_score = meteor_results["meteor"] | |
# Compute ROUGE-L score | |
rouge_results = rouge.compute(predictions=predictions, references=references, rouge_types=["rougeL"]) | |
#rouge_l_score = rouge_results["rougeL"].mid.fmeasure | |
print(rouge_results) | |
# Compute BERT-Score | |
P, R, F1 = bert_score.score(predictions, references, lang="en", rescale_with_baseline=True) | |
bert_score_f1 = F1.mean().item() | |
# Print results | |
# print(f"BLEU Score: {bleu_score}") | |
print(f"METEOR Score: {meteor_score}") | |
# print(f"ROUGE-L Score: {rouge_l_score}") | |
print(f"BERT-Score F1: {bert_score_f1}") | |