Spaces:
Build error
Build error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import pickle | |
from utils import get_image_arrays, get_image_predictions, show_image | |
st.title('Hateful Memes Classification') | |
image_path = './images/' | |
demo_data_file = 'demo_data.csv' | |
demo_data = pd.read_csv('demo_data.csv') | |
TFLITE_FILE_PATH = 'image_model.tflite' | |
demo_data = demo_data.sample(1) | |
y_true = demo_data['label'] | |
image_id = demo_data['image_id'] | |
text = demo_data['text'] | |
image_id_dict = dict(image_id).values() | |
image_id_string = list(image_id_dict)[0] | |
st.write('Meme:') | |
st.image(image_path+image_id_string) | |
# Image Unimodel | |
image_array = get_image_arrays(image_id, image_path) | |
image_prediction = get_image_predictions(image_array, TFLITE_FILE_PATH) | |
y_pred_image = np.argmax(image_prediction, axis=1) | |
print('Image Prediction Probabilities:') | |
print(image_prediction) | |
# TFIDF Model | |
model = 'tfidf_model.pickle' | |
vectorizer = 'tfidf_vectorizer.pickle' | |
tfidf_model = pickle.load(open(model, 'rb')) | |
tfidf_vectorizer = pickle.load(open(vectorizer, 'rb')) | |
transformed_text = tfidf_vectorizer.transform(text) | |
text_prediction = tfidf_model.predict_proba(transformed_text) | |
y_pred_text = np.argmax(text_prediction, axis=1) | |
print('Text Prediction Probabilities:') | |
print(text_prediction) | |
# Ensemble Probabilities | |
ensemble_prediction = np.mean(np.array([image_prediction, text_prediction]), axis=0) | |
y_pred_ensemble = np.argmax(ensemble_prediction, axis=1) | |
print(ensemble_prediction) | |
# StreamLit Display | |
st.write('Image Model Predictions:') | |
st.write(np.round(np.array(image_prediction), 4)) | |
st.write('Text Model Predictions:') | |
st.write(np.round(np.array(text_prediction), 4)) | |
st.write('Ensemble Model Predictions:') | |
st.write(np.round(np.array(ensemble_prediction), 4)) | |
true_label = list(dict(y_true).values())[0] | |
predicted_label = y_pred_ensemble[0] | |
if true_label == 0: | |
st.write('True Label: non-hateful') | |
if true_label == 1: | |
st.write('True Label: hateful') | |
if predicted_label == 0: | |
st.write('Predicted Label: non-hateful') | |
if predicted_label == 1: | |
st.write('Predicted Label: hateful') | |
st.button('Random Meme') | |