PhiRAG / advanced_rag.py
alx-d's picture
Upload folder using huggingface_hub
01330c2 verified
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import datetime
import functools
import traceback
from typing import List, Optional, Any, Dict
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain_community.llms import HuggingFacePipeline
# Other LangChain and community imports
from langchain_community.document_loaders import OnlinePDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser, Document
from langchain_core.runnables import RunnableParallel, RunnableLambda
from transformers.quantizers.auto import AutoQuantizationConfig
import gradio as gr
from pydantic import PrivateAttr
import pydantic
from langchain.llms.base import LLM
from typing import Any, Optional, List
import typing
import time
import re
import requests
from langchain.schema import Document
from langchain_community.document_loaders import PyMuPDFLoader # Updated loader
import tempfile
import mimetypes
def get_mime_type(file_path):
return mimetypes.guess_type(file_path)[0] or 'application/octet-stream'
print("Pydantic Version: ")
print(pydantic.__version__)
# Add Mistral imports with fallback handling
try:
from mistralai import Mistral
MISTRAL_AVAILABLE = True
debug_print = lambda msg: print(f"[{datetime.datetime.now().isoformat()}] {msg}")
debug_print("Loaded latest Mistral client library")
except ImportError:
MISTRAL_AVAILABLE = False
debug_print = lambda msg: print(f"[{datetime.datetime.now().isoformat()}] {msg}")
debug_print("Mistral client library not found. Install with: pip install mistralai")
def debug_print(message: str):
print(f"[{datetime.datetime.now().isoformat()}] {message}", flush=True)
def word_count(text: str) -> int:
return len(text.split())
# Initialize a tokenizer for token counting (using gpt2 as a generic fallback)
def initialize_tokenizer():
try:
return AutoTokenizer.from_pretrained("gpt2")
except Exception as e:
debug_print("Failed to initialize tokenizer: " + str(e))
return None
global_tokenizer = initialize_tokenizer()
def count_tokens(text: str) -> int:
if global_tokenizer:
try:
return len(global_tokenizer.encode(text))
except Exception as e:
return len(text.split())
return len(text.split())
# Add these imports at the top of your file
import uuid
import threading
import queue
from typing import Dict, Any, Tuple, Optional
import time
# Global storage for jobs and results
jobs = {} # Stores job status and results
results_queue = queue.Queue() # Thread-safe queue for completed jobs
processing_lock = threading.Lock() # Prevent simultaneous processing of the same job
# Add a global variable to store the last job ID
last_job_id = None
# Add these missing async processing functions
def process_in_background(job_id, function, args):
"""Process a function in the background and store results"""
try:
debug_print(f"Processing job {job_id} in background")
result = function(*args)
results_queue.put((job_id, result))
debug_print(f"Job {job_id} completed and added to results queue")
except Exception as e:
debug_print(f"Error in background job {job_id}: {str(e)}")
error_result = (f"Error processing job: {str(e)}", "", "", "")
results_queue.put((job_id, error_result))
def load_pdfs_async(file_links, model_choice, prompt_template, bm25_weight, temperature, top_p):
"""Asynchronous version of load_pdfs_updated to prevent timeouts"""
global last_job_id
if not file_links:
return "Please enter non-empty URLs", "", "Model used: N/A", "", "", get_job_list()
job_id = str(uuid.uuid4())
debug_print(f"Starting async job {job_id} for file loading")
# Start background thread
threading.Thread(
target=process_in_background,
args=(job_id, load_pdfs_updated, [file_links, model_choice, prompt_template, bm25_weight, temperature, top_p])
).start()
job_query = f"Loading files: {file_links.split()[0]}..." if file_links else "No files"
jobs[job_id] = {
"status": "processing",
"type": "load_files",
"start_time": time.time(),
"query": job_query
}
last_job_id = job_id
return (
f"Files submitted and processing in the background (Job ID: {job_id}).\n\n"
f"Use 'Check Job Status' tab with this ID to get results.",
f"Job ID: {job_id}",
f"Model requested: {model_choice}",
job_id, # Return job_id to update the job_id_input component
job_query, # Return job_query to update the job_query_display component
get_job_list() # Return updated job list
)
def submit_query_async(query, model_choice=None):
"""Asynchronous version of submit_query_updated to prevent timeouts"""
global last_job_id
if not query:
return "Please enter a non-empty query", "", "Input tokens: 0", "Output tokens: 0", "", "", get_job_list()
job_id = str(uuid.uuid4())
debug_print(f"Starting async job {job_id} for query: {query}")
# Update model if specified
if model_choice and rag_chain and rag_chain.llm_choice != model_choice:
debug_print(f"Updating model to {model_choice} for this query")
rag_chain.update_llm_pipeline(model_choice, rag_chain.temperature, rag_chain.top_p,
rag_chain.prompt_template, rag_chain.bm25_weight)
# Start background thread
threading.Thread(
target=process_in_background,
args=(job_id, submit_query_updated, [query])
).start()
jobs[job_id] = {
"status": "processing",
"type": "query",
"start_time": time.time(),
"query": query,
"model": rag_chain.llm_choice if hasattr(rag_chain, 'llm_choice') else "Unknown"
}
last_job_id = job_id
return (
f"Query submitted and processing in the background (Job ID: {job_id}).\n\n"
f"Use 'Check Job Status' tab with this ID to get results.",
f"Job ID: {job_id}",
f"Input tokens: {count_tokens(query)}",
"Output tokens: pending",
job_id, # Return job_id to update the job_id_input component
query, # Return query to update the job_query_display component
get_job_list() # Return updated job list
)
def update_ui_with_last_job_id():
# This function doesn't need to do anything anymore
# We'll update the UI directly in the functions that call this
pass
# Function to display all jobs as a clickable list
def get_job_list():
job_list_md = "### Submitted Jobs\n\n"
if not jobs:
return "No jobs found. Submit a query or load files to create jobs."
# Sort jobs by start time (newest first)
sorted_jobs = sorted(
[(job_id, job_info) for job_id, job_info in jobs.items()],
key=lambda x: x[1].get("start_time", 0),
reverse=True
)
for job_id, job_info in sorted_jobs:
status = job_info.get("status", "unknown")
job_type = job_info.get("type", "unknown")
query = job_info.get("query", "")
start_time = job_info.get("start_time", 0)
time_str = datetime.datetime.fromtimestamp(start_time).strftime("%Y-%m-%d %H:%M:%S")
# Create a shortened query preview
query_preview = query[:30] + "..." if query and len(query) > 30 else query or "N/A"
# Add color and icons based on status
if status == "processing":
# Red color with processing icon for processing jobs
status_formatted = f"<span style='color: red'>⏳ {status}</span>"
elif status == "completed":
# Green color with checkmark for completed jobs
status_formatted = f"<span style='color: green'>✅ {status}</span>"
else:
# Default formatting for unknown status
status_formatted = f"<span style='color: orange'>❓ {status}</span>"
# Create clickable links using Markdown
if job_type == "query":
job_list_md += f"- [{job_id}](javascript:void) - {time_str} - {status_formatted} - Query: {query_preview}\n"
else:
job_list_md += f"- [{job_id}](javascript:void) - {time_str} - {status_formatted} - File Load Job\n"
return job_list_md
# Function to handle job list clicks
def job_selected(job_id):
if job_id in jobs:
return job_id, jobs[job_id].get("query", "No query for this job")
return job_id, "Job not found"
# Function to refresh the job list
def refresh_job_list():
return get_job_list()
# Function to sync model dropdown boxes
def sync_model_dropdown(value):
return value
# Function to check job status
def check_job_status(job_id):
if not job_id:
return "Please enter a job ID", "", "", "", ""
# Process any completed jobs in the queue
try:
while not results_queue.empty():
completed_id, result = results_queue.get_nowait()
if completed_id in jobs:
jobs[completed_id]["status"] = "completed"
jobs[completed_id]["result"] = result
jobs[completed_id]["end_time"] = time.time()
debug_print(f"Job {completed_id} completed and stored in jobs dictionary")
except queue.Empty:
pass
# Check if the requested job exists
if job_id not in jobs:
return "Job not found. Please check the ID and try again.", "", "", "", ""
job = jobs[job_id]
job_query = job.get("query", "No query available for this job")
# If job is still processing
if job["status"] == "processing":
elapsed_time = time.time() - job["start_time"]
job_type = job.get("type", "unknown")
if job_type == "load_files":
return (
f"Files are still being processed (elapsed: {elapsed_time:.1f}s).\n\n"
f"Try checking again in a few seconds.",
f"Job ID: {job_id}",
f"Status: Processing",
"",
job_query
)
else: # query job
return (
f"Query is still being processed (elapsed: {elapsed_time:.1f}s).\n\n"
f"Try checking again in a few seconds.",
f"Job ID: {job_id}",
f"Input tokens: {count_tokens(job.get('query', ''))}",
"Output tokens: pending",
job_query
)
# If job is completed
if job["status"] == "completed":
result = job["result"]
processing_time = job["end_time"] - job["start_time"]
if job.get("type") == "load_files":
return (
f"{result[0]}\n\nProcessing time: {processing_time:.1f}s",
result[1],
result[2],
"",
job_query
)
else: # query job
return (
f"{result[0]}\n\nProcessing time: {processing_time:.1f}s",
result[1],
result[2],
result[3],
job_query
)
# Fallback for unknown status
return f"Job status: {job['status']}", "", "", "", job_query
# Function to clean up old jobs
def cleanup_old_jobs():
current_time = time.time()
to_delete = []
for job_id, job in jobs.items():
# Keep completed jobs for 24 hours, processing jobs for 48 hours
if job["status"] == "completed" and (current_time - job.get("end_time", 0)) > 86400:
to_delete.append(job_id)
elif job["status"] == "processing" and (current_time - job.get("start_time", 0)) > 172800:
to_delete.append(job_id)
for job_id in to_delete:
del jobs[job_id]
debug_print(f"Cleaned up {len(to_delete)} old jobs. {len(jobs)} jobs remaining.")
return f"Cleaned up {len(to_delete)} old jobs", "", ""
# Improve the truncate_prompt function to be more aggressive with limiting context
def truncate_prompt(prompt: str, max_tokens: int = 4096) -> str:
"""Truncate prompt to fit within token limit, preserving the most recent/relevant parts."""
if not prompt:
return ""
if global_tokenizer:
try:
tokens = global_tokenizer.encode(prompt)
if len(tokens) > max_tokens:
# For prompts, we often want to keep the beginning instructions and the end context
# So we'll keep the first 20% and the last 80% of the max tokens
beginning_tokens = int(max_tokens * 0.2)
ending_tokens = max_tokens - beginning_tokens
new_tokens = tokens[:beginning_tokens] + tokens[-(ending_tokens):]
return global_tokenizer.decode(new_tokens)
except Exception as e:
debug_print(f"Truncation error: {str(e)}")
# Fallback to word-based truncation
words = prompt.split()
if len(words) > max_tokens:
beginning_words = int(max_tokens * 0.2)
ending_words = max_tokens - beginning_words
return " ".join(words[:beginning_words] + words[-(ending_words):])
return prompt
default_prompt = """\
{conversation_history}
Use the following context to provide a detailed technical answer to the user's question.
Do not include an introduction like "Based on the provided documents, ...". Just answer the question.
Context:
{context}
User's question:
{question}
"""
# #If you don't know the answer, please respond with "I don't know".
def load_txt_from_url(url: str) -> Document:
response = requests.get(url)
if response.status_code == 200:
text = response.text.strip()
if not text:
raise ValueError(f"TXT file at {url} is empty.")
return Document(page_content=text, metadata={"source": url})
else:
raise Exception(f"Failed to load {url} with status {response.status_code}")
from pdfminer.high_level import extract_text
from langchain_core.documents import Document
def get_confirm_token(response):
for key, value in response.cookies.items():
if key.startswith("download_warning"):
return value
return None
def download_file_from_google_drive(file_id, destination):
"""
Download a file from Google Drive handling large file confirmation.
"""
URL = "https://docs.google.com/uc?export=download&confirm=1"
session = requests.Session()
response = session.get(URL, params={"id": file_id}, stream=True)
token = get_confirm_token(response)
if token:
params = {"id": file_id, "confirm": token}
response = session.get(URL, params=params, stream=True)
save_response_content(response, destination)
def save_response_content(response, destination):
CHUNK_SIZE = 32768
with open(destination, "wb") as f:
for chunk in response.iter_content(CHUNK_SIZE):
if chunk:
f.write(chunk)
def extract_file_id(drive_link: str) -> str:
# Check for /d/ format
match = re.search(r"/d/([a-zA-Z0-9_-]+)", drive_link)
if match:
return match.group(1)
# Check for open?id= format
match = re.search(r"open\?id=([a-zA-Z0-9_-]+)", drive_link)
if match:
return match.group(1)
raise ValueError("Could not extract file ID from the provided Google Drive link.")
def load_txt_from_google_drive(link: str) -> Document:
"""
Load text from a Google Drive shared link
"""
file_id = extract_file_id(link)
# Create direct download link
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
# Request the file content
response = requests.get(download_url)
if response.status_code != 200:
raise ValueError(f"Failed to download file from Google Drive. Status code: {response.status_code}")
# Create a Document object
content = response.text
if not content.strip():
raise ValueError(f"TXT file from Google Drive is empty.")
metadata = {"source": link}
return Document(page_content=content, metadata=metadata)
def load_pdf_from_google_drive(link: str) -> list:
"""
Load a PDF document from a Google Drive link using pdfminer to extract text.
Returns a list of LangChain Document objects.
"""
file_id = extract_file_id(link)
debug_print(f"Extracted file ID: {file_id}")
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_path = temp_file.name
try:
download_file_from_google_drive(file_id, temp_path)
debug_print(f"File downloaded to: {temp_path}")
try:
full_text = extract_text(temp_path)
if not full_text.strip():
raise ValueError("Extracted text is empty. The PDF might be image-based.")
debug_print("Extracted preview text from PDF:")
debug_print(full_text[:1000]) # Preview first 1000 characters
document = Document(page_content=full_text, metadata={"source": link})
return [document]
except Exception as e:
debug_print(f"Could not extract text from PDF: {e}")
return []
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
def load_file_from_google_drive(link: str) -> list:
"""
Load a document from a Google Drive link, detecting whether it's a PDF or TXT file.
Returns a list of LangChain Document objects.
"""
file_id = extract_file_id(link)
# Create direct download link
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
# First, try to read a small portion of the file to determine its type
try:
# Use a streaming request to read just the first part of the file
response = requests.get(download_url, stream=True)
if response.status_code != 200:
raise ValueError(f"Failed to download file from Google Drive. Status code: {response.status_code}")
# Read just the first 1024 bytes to check file signature
file_start = next(response.iter_content(1024))
response.close() # Close the stream
# Convert bytes to string for pattern matching
file_start_str = file_start.decode('utf-8', errors='ignore')
# Check for PDF signature (%PDF-) at the beginning of the file
if file_start_str.startswith('%PDF-') or b'%PDF-' in file_start:
debug_print(f"Detected PDF file by content signature from Google Drive: {link}")
return load_pdf_from_google_drive(link)
else:
# If not a PDF, try as text
debug_print(f"No PDF signature found, treating as TXT file from Google Drive: {link}")
# Since we already downloaded part of the file, get the full content
response = requests.get(download_url)
if response.status_code != 200:
raise ValueError(f"Failed to download complete file from Google Drive. Status code: {response.status_code}")
content = response.text
if not content.strip():
raise ValueError(f"TXT file from Google Drive is empty.")
doc = Document(page_content=content, metadata={"source": link})
return [doc]
except UnicodeDecodeError:
# If we get a decode error, it's likely a binary file like PDF
debug_print(f"Got decode error, likely a binary file. Treating as PDF from Google Drive: {link}")
return load_pdf_from_google_drive(link)
except Exception as e:
debug_print(f"Error detecting file type: {e}")
# Fall back to trying both formats
debug_print("Falling back to trying both formats for Google Drive file")
try:
return load_pdf_from_google_drive(link)
except Exception as pdf_error:
debug_print(f"Failed to load as PDF: {pdf_error}")
try:
doc = load_txt_from_google_drive(link)
return [doc]
except Exception as txt_error:
debug_print(f"Failed to load as TXT: {txt_error}")
raise ValueError(f"Could not load file from Google Drive as either PDF or TXT: {link}")
class ElevatedRagChain:
def __init__(self, llm_choice: str = "Meta-Llama-3", prompt_template: str = default_prompt,
bm25_weight: float = 0.6, temperature: float = 0.5, top_p: float = 0.95) -> None:
debug_print(f"Initializing ElevatedRagChain with model: {llm_choice}")
self.embed_func = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"}
)
self.bm25_weight = bm25_weight
self.faiss_weight = 1.0 - bm25_weight
self.top_k = 5
self.llm_choice = llm_choice
self.temperature = temperature
self.top_p = top_p
self.prompt_template = prompt_template
self.context = ""
self.conversation_history: List[Dict[str, str]] = []
self.raw_data = None
self.split_data = None
self.elevated_rag_chain = None
# Instance method to capture context and conversation history
def capture_context(self, result):
self.context = "\n".join([str(doc) for doc in result["context"]])
result["context"] = self.context
history_text = (
"\n".join([f"Q: {conv['query']}\nA: {conv['response']}" for conv in self.conversation_history])
if self.conversation_history else ""
)
result["conversation_history"] = history_text
return result
# Instance method to extract question from input data
def extract_question(self, input_data):
return input_data["question"]
# Improve error handling in the ElevatedRagChain class
def create_llm_pipeline(self):
from langchain.llms.base import LLM # Import LLM here so it's always defined
normalized = self.llm_choice.lower()
try:
if "remote" in normalized:
debug_print("Creating remote Meta-Llama-3 pipeline via Hugging Face Inference API...")
from huggingface_hub import InferenceClient
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
hf_api_token = os.environ.get("HF_API_TOKEN")
if not hf_api_token:
raise ValueError("Please set the HF_API_TOKEN environment variable to use remote inference.")
client = InferenceClient(token=hf_api_token, timeout=120)
# We no longer use wait_for_model because it's unsupported
def remote_generate(prompt: str) -> str:
max_retries = 3
backoff = 2 # start with 2 seconds
for attempt in range(max_retries):
try:
debug_print(f"Remote generation attempt {attempt+1}")
response = client.text_generation(
prompt,
model=repo_id,
temperature=self.temperature,
top_p=self.top_p,
max_new_tokens=512 # Reduced token count for speed
)
return response
except Exception as e:
debug_print(f"Attempt {attempt+1} failed with error: {e}")
if attempt == max_retries - 1:
raise
time.sleep(backoff)
backoff *= 2 # exponential backoff
return "Failed to generate response after multiple attempts."
class RemoteLLM(LLM):
@property
def _llm_type(self) -> str:
return "remote_llm"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
return remote_generate(prompt)
@property
def _identifying_params(self) -> dict:
return {"model": repo_id}
debug_print("Remote Meta-Llama-3 pipeline created successfully.")
return RemoteLLM()
elif "mistral-api" in normalized:
debug_print("Creating Mistral API pipeline...")
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
if not mistral_api_key:
raise ValueError("Please set the MISTRAL_API_KEY environment variable to use Mistral API.")
try:
from mistralai import Mistral
debug_print("Mistral library imported successfully")
except ImportError:
debug_print("Mistral client library not installed. Falling back to Llama pipeline.")
normalized = "llama"
if normalized != "llama":
# from pydantic import PrivateAttr
# from langchain.llms.base import LLM
# from typing import Any, Optional, List
# import typing
class MistralLLM(LLM):
temperature: float = 0.7
top_p: float = 0.95
_client: Any = PrivateAttr(default=None)
def __init__(self, api_key: str, temperature: float = 0.7, top_p: float = 0.95, **kwargs: Any):
try:
super().__init__(**kwargs)
# Bypass Pydantic's __setattr__ to assign to _client
object.__setattr__(self, '_client', Mistral(api_key=api_key))
self.temperature = temperature
self.top_p = top_p
except Exception as e:
debug_print(f"Init Mistral failed with error: {e}")
@property
def _llm_type(self) -> str:
return "mistral_llm"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
try:
debug_print("Calling Mistral API...")
response = self._client.chat.complete(
model="mistral-small-latest",
messages=[{"role": "user", "content": prompt}],
temperature=self.temperature,
top_p=self.top_p
)
return response.choices[0].message.content
except Exception as e:
debug_print(f"Mistral API error: {str(e)}")
return f"Error generating response: {str(e)}"
@property
def _identifying_params(self) -> dict:
return {"model": "mistral-small-latest"}
debug_print("Creating Mistral LLM instance")
mistral_llm = MistralLLM(api_key=mistral_api_key, temperature=self.temperature, top_p=self.top_p)
debug_print("Mistral API pipeline created successfully.")
return mistral_llm
else:
# Default case - using a fallback model (or Llama)
debug_print("Using local/fallback model pipeline")
model_id = "facebook/opt-350m" # Use a smaller model as fallback
pipe = pipeline(
"text-generation",
model=model_id,
device=-1, # CPU
max_length=1024
)
class LocalLLM(LLM):
@property
def _llm_type(self) -> str:
return "local_llm"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
# For this fallback, truncate prompt if it exceeds limits
reserved_gen = 128
max_total = 1024
max_prompt_tokens = max_total - reserved_gen
truncated_prompt = truncate_prompt(prompt, max_tokens=max_prompt_tokens)
generated = pipe(truncated_prompt, max_new_tokens=reserved_gen)[0]["generated_text"]
return generated
@property
def _identifying_params(self) -> dict:
return {"model": model_id, "max_length": 1024}
debug_print("Local fallback pipeline created.")
return LocalLLM()
except Exception as e:
debug_print(f"Error creating LLM pipeline: {str(e)}")
# Return a dummy LLM that explains the error
class ErrorLLM(LLM):
@property
def _llm_type(self) -> str:
return "error_llm"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
return f"Error initializing LLM: \n\nPlease check your environment variables and try again."
@property
def _identifying_params(self) -> dict:
return {"model": "error"}
return ErrorLLM()
def update_llm_pipeline(self, new_model_choice: str, temperature: float, top_p: float, prompt_template: str, bm25_weight: float):
debug_print(f"Updating chain with new model: {new_model_choice}")
self.llm_choice = new_model_choice
self.temperature = temperature
self.top_p = top_p
self.prompt_template = prompt_template
self.bm25_weight = bm25_weight
self.faiss_weight = 1.0 - bm25_weight
self.llm = self.create_llm_pipeline()
def format_response(response: str) -> str:
input_tokens = count_tokens(self.context + self.prompt_template)
output_tokens = count_tokens(response)
formatted = f"### Response\n\n{response}\n\n---\n"
formatted += f"- **Input tokens:** {input_tokens}\n"
formatted += f"- **Output tokens:** {output_tokens}\n"
formatted += f"- **Generated using:** {self.llm_choice}\n"
formatted += f"\n**Conversation History:** {len(self.conversation_history)} conversation(s) considered.\n"
return formatted
base_runnable = RunnableParallel({
"context": RunnableLambda(self.extract_question) | self.ensemble_retriever,
"question": RunnableLambda(self.extract_question)
}) | self.capture_context
self.elevated_rag_chain = base_runnable | self.rag_prompt | self.llm | format_response
debug_print("Chain updated successfully with new LLM pipeline.")
def add_pdfs_to_vectore_store(self, file_links: List[str]) -> None:
debug_print(f"Processing files using {self.llm_choice}")
self.raw_data = []
for link in file_links:
if "drive.google.com" in link and ("file/d" in link or "open?id=" in link):
debug_print(f"Loading Google Drive file: {link}")
try:
documents = load_file_from_google_drive(link)
self.raw_data.extend(documents)
debug_print(f"Successfully loaded {len(documents)} pages/documents from Google Drive")
except Exception as e:
debug_print(f"Error loading Google Drive file {link}: {e}")
elif link.lower().endswith(".pdf"):
debug_print(f"Loading PDF: {link}")
loaded_docs = OnlinePDFLoader(link).load()
if loaded_docs:
self.raw_data.append(loaded_docs[0])
else:
debug_print(f"No content found in PDF: {link}")
elif link.lower().endswith(".txt") or link.lower().endswith(".utf-8"):
debug_print(f"Loading TXT: {link}")
try:
self.raw_data.append(load_txt_from_url(link))
except Exception as e:
debug_print(f"Error loading TXT file {link}: {e}")
else:
debug_print(f"File type not supported for URL: {link}")
debug_print("Files loaded successfully.")
debug_print("Starting text splitting...")
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
self.split_data = self.text_splitter.split_documents(self.raw_data)
if not self.split_data:
raise ValueError("Text splitting resulted in no chunks. Check the file contents.")
debug_print(f"Text splitting completed. Number of chunks: {len(self.split_data)}")
debug_print("Creating BM25 retriever...")
self.bm25_retriever = BM25Retriever.from_documents(self.split_data)
self.bm25_retriever.k = self.top_k
debug_print("BM25 retriever created.")
debug_print("Embedding chunks and creating FAISS vector store...")
self.vector_store = FAISS.from_documents(self.split_data, self.embed_func)
self.faiss_retriever = self.vector_store.as_retriever(search_kwargs={"k": self.top_k})
debug_print("FAISS vector store created successfully.")
self.ensemble_retriever = EnsembleRetriever(
retrievers=[self.bm25_retriever, self.faiss_retriever],
weights=[self.bm25_weight, self.faiss_weight]
)
base_runnable = RunnableParallel({
"context": RunnableLambda(self.extract_question) | self.ensemble_retriever,
"question": RunnableLambda(self.extract_question)
}) | self.capture_context
# Ensure the prompt template is set
self.rag_prompt = ChatPromptTemplate.from_template(self.prompt_template)
if self.rag_prompt is None:
raise ValueError("Prompt template could not be created from the given template.")
prompt_runnable = RunnableLambda(lambda vars: self.rag_prompt.format(**vars))
self.str_output_parser = StrOutputParser()
debug_print("Selecting LLM pipeline based on choice: " + self.llm_choice)
self.llm = self.create_llm_pipeline()
if self.llm is None:
raise ValueError("LLM pipeline creation failed.")
def format_response(response: str) -> str:
input_tokens = count_tokens(self.context + self.prompt_template)
output_tokens = count_tokens(response)
formatted = f"### Response\n\n{response}\n\n---\n"
formatted += f"- **Input tokens:** {input_tokens}\n"
formatted += f"- **Output tokens:** {output_tokens}\n"
formatted += f"- **Generated using:** {self.llm_choice}\n"
formatted += f"\n**Conversation History:** {len(self.conversation_history)} conversation(s) considered.\n"
return formatted
self.elevated_rag_chain = base_runnable | prompt_runnable | self.llm | format_response
debug_print("Elevated RAG chain successfully built and ready to use.")
def get_current_context(self) -> str:
base_context = "\n".join([str(doc) for doc in self.split_data[:3]]) if self.split_data else "No context available."
history_summary = "\n\n---\n**Recent Conversations (last 3):**\n"
recent = self.conversation_history[-3:]
if recent:
for i, conv in enumerate(recent, 1):
history_summary += f"**Conversation {i}:**\n- Query: {conv['query']}\n- Response: {conv['response']}\n"
else:
history_summary += "No conversation history."
return base_context + history_summary
# ----------------------------
# Gradio Interface Functions
# ----------------------------
global rag_chain
rag_chain = ElevatedRagChain()
def load_pdfs_updated(file_links, model_choice, prompt_template, bm25_weight, temperature, top_p):
debug_print("Inside load_pdfs function.")
if not file_links:
debug_print("Please enter non-empty URLs")
return "Please enter non-empty URLs", "Word count: N/A", "Model used: N/A", "Context: N/A"
try:
links = [link.strip() for link in file_links.split("\n") if link.strip()]
global rag_chain
if rag_chain.raw_data:
rag_chain.update_llm_pipeline(model_choice, temperature, top_p, prompt_template, bm25_weight)
context_display = rag_chain.get_current_context()
response_msg = f"Files already loaded. Chain updated with model: {model_choice}"
return (
response_msg,
f"Word count: {word_count(rag_chain.context)}",
f"Model used: {rag_chain.llm_choice}",
f"Context:\n{context_display}"
)
else:
rag_chain = ElevatedRagChain(
llm_choice=model_choice,
prompt_template=prompt_template,
bm25_weight=bm25_weight,
temperature=temperature,
top_p=top_p
)
rag_chain.add_pdfs_to_vectore_store(links)
context_display = rag_chain.get_current_context()
response_msg = f"Files loaded successfully. Using model: {model_choice}"
return (
response_msg,
f"Word count: {word_count(rag_chain.context)}",
f"Model used: {rag_chain.llm_choice}",
f"Context:\n{context_display}"
)
except Exception as e:
error_msg = traceback.format_exc()
debug_print("Could not load files. Error: " + error_msg)
return (
"Error loading files: " + str(e),
f"Word count: {word_count('')}",
f"Model used: {rag_chain.llm_choice}",
"Context: N/A"
)
def update_model(new_model: str):
global rag_chain
if rag_chain and rag_chain.raw_data:
rag_chain.update_llm_pipeline(new_model, rag_chain.temperature, rag_chain.top_p,
rag_chain.prompt_template, rag_chain.bm25_weight)
debug_print(f"Model updated to {rag_chain.llm_choice}")
return f"Model updated to: {rag_chain.llm_choice}"
else:
return "No files loaded; please load files first."
# Update submit_query_updated to better handle context limitation
def submit_query_updated(query):
debug_print(f"Processing query: {query}")
if not query:
debug_print("Empty query received")
return "Please enter a non-empty query", "", "Input tokens: 0", "Output tokens: 0"
if not hasattr(rag_chain, 'elevated_rag_chain') or not rag_chain.raw_data:
debug_print("RAG chain not initialized")
return "Please load files first.", "", "Input tokens: 0", "Output tokens: 0"
try:
# Determine max context size based on model
model_name = rag_chain.llm_choice.lower()
max_context_tokens = 32000 if "mistral" in model_name else 4096
# Reserve 20% of tokens for the question and response generation
reserved_tokens = int(max_context_tokens * 0.2)
max_context_tokens -= reserved_tokens
# Collect conversation history (last 2 only to save tokens)
if rag_chain.conversation_history:
recent_history = rag_chain.conversation_history[-2:]
history_text = "\n".join([f"Q: {conv['query']}\nA: {conv['response'][:300]}..."
for conv in recent_history])
else:
history_text = ""
# Get history token count
history_tokens = count_tokens(history_text)
# Adjust context tokens based on history size
context_tokens = max_context_tokens - history_tokens
# Ensure we have some minimum context
context_tokens = max(context_tokens, 1000)
# Truncate context if needed
context = truncate_prompt(rag_chain.context, max_tokens=context_tokens)
debug_print(f"Using model: {model_name}, context tokens: {count_tokens(context)}, history tokens: {history_tokens}")
prompt_variables = {
"conversation_history": history_text,
"context": context,
"question": query
}
debug_print("Invoking RAG chain")
response = rag_chain.elevated_rag_chain.invoke({"question": query})
# Store only a reasonable amount of the response in history
trimmed_response = response[:1000] + ("..." if len(response) > 1000 else "")
rag_chain.conversation_history.append({"query": query, "response": trimmed_response})
input_token_count = count_tokens(query)
output_token_count = count_tokens(response)
debug_print(f"Query processed successfully. Output tokens: {output_token_count}")
return (
response,
rag_chain.get_current_context(),
f"Input tokens: {input_token_count}",
f"Output tokens: {output_token_count}"
)
except Exception as e:
error_msg = traceback.format_exc()
debug_print(f"LLM error: {error_msg}")
return (
f"Query error: {str(e)}\n\nTry using a smaller document or simplifying your query.",
"",
"Input tokens: 0",
"Output tokens: 0"
)
def reset_app_updated():
global rag_chain
rag_chain = ElevatedRagChain()
debug_print("App reset successfully.")
return (
"App reset successfully. You can now load new files",
"",
"Model used: Not selected"
)
# ----------------------------
# Gradio Interface Setup
# ----------------------------
custom_css = """
textarea {
overflow-y: scroll !important;
max-height: 200px;
}
"""
# Function to add dots and reset
def add_dots_and_reset():
if not hasattr(add_dots_and_reset, "dots"):
add_dots_and_reset.dots = "" # Initialize the attribute
# Add a dot
add_dots_and_reset.dots += "."
# Reset after 5 dots
if len(add_dots_and_reset.dots) > 5:
add_dots_and_reset.dots = ""
print(f"Current dots: {add_dots_and_reset.dots}") # Debugging print
return add_dots_and_reset.dots
# Define a dummy function to simulate data retrieval
def run_query(max_value):
# Simulate a data retrieval or processing function
return [[i, i**2] for i in range(1, max_value + 1)]
# Function to call both refresh_job_list and check_job_status using the last job ID
def periodic_update(is_checked):
interval = 2 if is_checked else None
debug_print(f"Auto-refresh checkbox is {'checked' if is_checked else 'unchecked'}, every={interval}")
if is_checked:
global last_job_id
job_list_md = refresh_job_list()
job_status = check_job_status(last_job_id) if last_job_id else ("No job ID available", "", "", "", "")
query_results = run_query(10) # Use a fixed value or another logic if needed
context_info = rag_chain.get_current_context() if rag_chain else "No context available."
return job_list_md, job_status[0], query_results, context_info
else:
# Return empty values to stop updates
return "", "", [], ""
# Define a function to determine the interval based on the checkbox state
def get_interval(is_checked):
return 2 if is_checked else None
# Update the Gradio interface to include job status checking
with gr.Blocks(css=custom_css, js="""
document.addEventListener('DOMContentLoaded', function() {
// Add event listener for job list clicks
const jobListInterval = setInterval(() => {
const jobLinks = document.querySelectorAll('.job-list-container a');
if (jobLinks.length > 0) {
jobLinks.forEach(link => {
link.addEventListener('click', function(e) {
e.preventDefault();
const jobId = this.textContent.split(' ')[0];
// Find the job ID input textbox and set its value
const jobIdInput = document.querySelector('.job-id-input input');
if (jobIdInput) {
jobIdInput.value = jobId;
// Trigger the input event to update Gradio's state
jobIdInput.dispatchEvent(new Event('input', { bubbles: true }));
}
});
});
clearInterval(jobListInterval);
}
}, 500);
});
""") as app:
gr.Markdown('''# PhiRAG - Async Version
**PhiRAG** Query Your Data with Advanced RAG Techniques
**Model Selection & Parameters:** Choose from the following options:
- 🇺🇸 Remote Meta-Llama-3 - has context windows of 8000 tokens
- 🇪🇺 Mistral-API - has context windows of 32000 tokens
**🔥 Randomness (Temperature):** Adjusts output predictability.
- Example: 0.2 makes the output very deterministic (less creative), while 0.8 introduces more variety and spontaneity.
**🎯 Word Variety (Top‑p):** Limits word choices to a set probability percentage.
- Example: 0.5 restricts output to the most likely 50% of token choices for a focused answer; 0.95 allows almost all possibilities for more diverse responses.
**⚖️ BM25 Weight:** Adjust Lexical vs Semantics.
- Example: A value of 0.8 puts more emphasis on exact keyword (lexical) matching, while 0.3 shifts emphasis toward semantic similarity.
**✏️ Prompt Template:** Edit as desired.
**🔗 File URLs:** Enter one URL per line (.pdf or .txt).\
- Example: Provide one URL per line, such as
https://www.gutenberg.org/ebooks/8438.txt.utf-8
**🔍 Query:** Enter your query below.
**⚠️ IMPORTANT: This app now uses asynchronous processing to avoid timeout issues**
- When you load files or submit a query, you'll receive a Job ID
- Use the "Check Job Status" tab to monitor and retrieve your results
''')
with gr.Tabs() as tabs:
with gr.TabItem("Setup & Load Files"):
with gr.Row():
with gr.Column():
model_dropdown = gr.Dropdown(
choices=["🇺🇸 Remote Meta-Llama-3", "🇪🇺 Mistral-API"],
value="🇺🇸 Remote Meta-Llama-3",
label="Select Model"
)
temperature_slider = gr.Slider(
minimum=0.1, maximum=1.0, value=0.5, step=0.1,
label="Randomness (Temperature)"
)
top_p_slider = gr.Slider(
minimum=0.1, maximum=0.99, value=0.95, step=0.05,
label="Word Variety (Top-p)"
)
with gr.Column():
pdf_input = gr.Textbox(
label="Enter your file URLs (one per line)",
placeholder="Enter one URL per line (.pdf or .txt)",
lines=4
)
prompt_input = gr.Textbox(
label="Custom Prompt Template",
placeholder="Enter your custom prompt template here",
lines=8,
value=default_prompt
)
with gr.Column():
bm25_weight_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.6, step=0.1,
label="Lexical vs Semantics (BM25 Weight)"
)
load_button = gr.Button("Load Files (Async)")
load_status = gr.Markdown("Status: Waiting for files")
with gr.Row():
load_response = gr.Textbox(
label="Load Response",
placeholder="Response will appear here",
lines=4
)
load_context = gr.Textbox(
label="Context Info",
placeholder="Context info will appear here",
lines=4
)
with gr.Row():
model_output = gr.Markdown("**Current Model**: Not selected")
with gr.TabItem("Submit Query"):
with gr.Row():
# Add this line to define the query_model_dropdown
query_model_dropdown = gr.Dropdown(
choices=["🇺🇸 Remote Meta-Llama-3", "🇪🇺 Mistral-API"],
value="🇺🇸 Remote Meta-Llama-3",
label="Query Model"
)
query_input = gr.Textbox(
label="Enter your query here",
placeholder="Type your query",
lines=4
)
submit_button = gr.Button("Submit Query (Async)")
with gr.Row():
query_response = gr.Textbox(
label="Query Response",
placeholder="Response will appear here (formatted as Markdown)",
lines=6
)
query_context = gr.Textbox(
label="Context Information",
placeholder="Retrieved context and conversation history will appear here",
lines=6
)
with gr.Row():
input_tokens = gr.Markdown("Input tokens: 0")
output_tokens = gr.Markdown("Output tokens: 0")
with gr.TabItem("Check Job Status"):
with gr.Row():
with gr.Column(scale=1):
job_list = gr.Markdown(
value="No jobs yet",
label="Job List (Click to select)"
)
# Add the Refresh Job List button
refresh_button = gr.Button("Refresh Job List")
# Use a Checkbox to control the periodic updates
auto_refresh_checkbox = gr.Checkbox(
label="Enable Auto Refresh",
value=False # Default to unchecked
)
# Use a DataFrame to display results
df = gr.DataFrame(
value=run_query(10), # Initial value
headers=["Number", "Square"],
label="Query Results",
visible=False # Set the DataFrame to be invisible
)
with gr.Column(scale=2):
job_id_input = gr.Textbox(
label="Job ID",
placeholder="Job ID will appear here when selected from the list",
lines=1
)
job_query_display = gr.Textbox(
label="Job Query",
placeholder="The query associated with this job will appear here",
lines=2,
interactive=False
)
check_button = gr.Button("Check Status")
cleanup_button = gr.Button("Cleanup Old Jobs")
with gr.Row():
status_response = gr.Textbox(
label="Job Result",
placeholder="Job result will appear here",
lines=6
)
status_context = gr.Textbox(
label="Context Information",
placeholder="Context information will appear here",
lines=6
)
with gr.Row():
status_tokens1 = gr.Markdown("")
status_tokens2 = gr.Markdown("")
with gr.TabItem("App Management"):
with gr.Row():
reset_button = gr.Button("Reset App")
with gr.Row():
reset_response = gr.Textbox(
label="Reset Response",
placeholder="Reset confirmation will appear here",
lines=2
)
reset_context = gr.Textbox(
label="",
placeholder="",
lines=2,
visible=False
)
with gr.Row():
reset_model = gr.Markdown("")
# Connect the buttons to their respective functions
load_button.click(
load_pdfs_async,
inputs=[pdf_input, model_dropdown, prompt_input, bm25_weight_slider, temperature_slider, top_p_slider],
outputs=[load_response, load_context, model_output, job_id_input, job_query_display, job_list]
)
# Also sync in the other direction
query_model_dropdown.change(
fn=sync_model_dropdown,
inputs=query_model_dropdown,
outputs=model_dropdown
)
submit_button.click(
submit_query_async,
inputs=[query_input, query_model_dropdown],
outputs=[query_response, query_context, input_tokens, output_tokens, job_id_input, job_query_display, job_list]
)
check_button.click(
check_job_status,
inputs=[job_id_input],
outputs=[status_response, status_context, status_tokens1, status_tokens2, job_query_display]
)
# Connect the refresh button to the refresh_job_list function
refresh_button.click(
refresh_job_list,
inputs=[],
outputs=[job_list]
)
# Connect the job list selection event (this is handled by JavaScript)
job_id_input.change(
job_selected,
inputs=[job_id_input],
outputs=[job_id_input, job_query_display]
)
cleanup_button.click(
cleanup_old_jobs,
inputs=[],
outputs=[status_response, status_context, status_tokens1]
)
reset_button.click(
reset_app_updated,
inputs=[],
outputs=[reset_response, reset_context, reset_model]
)
model_dropdown.change(
fn=sync_model_dropdown,
inputs=model_dropdown,
outputs=query_model_dropdown
)
# Add an event to refresh the job list on page load
app.load(
fn=refresh_job_list,
inputs=None,
outputs=job_list
)
# Use the Checkbox to control the periodic updates
auto_refresh_checkbox.change(
fn=periodic_update,
inputs=[auto_refresh_checkbox],
outputs=[job_list, status_response, df, status_context],
every=2 #if auto_refresh_checkbox.value else None # Directly set `every` based on the checkbox state
)
if __name__ == "__main__":
debug_print("Launching Gradio interface.")
app.queue().launch(share=False)