Spaces:
Sleeping
Sleeping
from datasets import load_dataset, Dataset | |
from sklearn.model_selection import train_test_split | |
from transformers import ( | |
BertTokenizer, | |
AutoModelForSequenceClassification, | |
Trainer, | |
TrainingArguments | |
) | |
import torch | |
from sklearn.metrics import accuracy_score, precision_recall_fscore_support | |
import numpy as np | |
def compute_metrics(eval_pred): | |
logits, labels = eval_pred | |
preds = np.argmax(logits, axis=-1) | |
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary') | |
acc = accuracy_score(labels, preds) | |
return { | |
'accuracy': acc, | |
'f1': f1, | |
'precision': precision, | |
'recall': recall | |
} | |
def main(): | |
# Check for GPU availability | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
# Load and prepare dataset | |
print("Loading dataset...") | |
dataset = load_dataset("ealvaradob/phishing-dataset", "combined_reduced", trust_remote_code=True) | |
df = dataset['train'].to_pandas() | |
# Split dataset | |
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) | |
train_dataset = Dataset.from_pandas(train_df, preserve_index=False) | |
test_dataset = Dataset.from_pandas(test_df, preserve_index=False) | |
# Initialize tokenizer and model | |
print("Initializing model...") | |
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased') | |
model = AutoModelForSequenceClassification.from_pretrained( | |
'bert-large-uncased', | |
num_labels=2 | |
).to(device) | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128) | |
# Tokenize datasets | |
print("Tokenizing datasets...") | |
train_dataset = train_dataset.map(tokenize_function, batched=True) | |
test_dataset = test_dataset.map(tokenize_function, batched=True) | |
# Convert to PyTorch datasets | |
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"]) | |
test_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"]) | |
# Set up training arguments | |
epochs = 3 | |
batch_size = 64 | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="epoch", | |
save_strategy="epoch", | |
learning_rate=5e-5, | |
per_device_train_batch_size=batch_size, | |
per_device_eval_batch_size=batch_size, | |
num_train_epochs=epochs, | |
weight_decay=0.01, | |
logging_dir='./logs', | |
logging_steps=50, | |
load_best_model_at_end=True, | |
metric_for_best_model="accuracy" | |
) | |
# Define Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=test_dataset, | |
tokenizer=tokenizer, | |
compute_metrics=compute_metrics | |
) | |
# Train model | |
print("Starting training...") | |
trainer.train() | |
# Evaluate the model | |
print("Evaluating model...") | |
eval_results = trainer.evaluate() | |
print(eval_results) | |
# Save the model and tokenizer | |
print("Saving model...") | |
model_path = "./phishing_model" | |
model.save_pretrained(model_path) | |
tokenizer.save_pretrained(model_path) | |
print(f"Model and tokenizer saved to {model_path}") | |
print("Training completed and model saved!") | |
if __name__ == "__main__": | |
main() | |