Spaces:
Sleeping
Sleeping
import collections | |
import os | |
import sys | |
import numpy as np | |
import torch | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
from torch.utils.data._utils.collate import np_str_obj_array_pattern, default_collate_err_msg_format | |
plt.switch_backend('agg') | |
def adjust_learning_rate(optimizer, epoch, args): | |
# lr = args.learning_rate * (0.2 ** (epoch // 2)) | |
if args.lradj == 'type1': | |
lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch - 1) // 1))} | |
elif args.lradj == 'type2': | |
lr_adjust = { | |
2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6, | |
10: 5e-7, 15: 1e-7, 20: 5e-8 | |
} | |
if epoch in lr_adjust.keys(): | |
lr = lr_adjust[epoch] | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
print('Updating learning rate to {}'.format(lr)) | |
class EarlyStopping: | |
def __init__(self, patience=7, verbose=False, delta=0): | |
self.patience = patience | |
self.verbose = verbose | |
self.counter = 0 | |
self.best_score = None | |
self.early_stop = False | |
self.val_loss_min = np.Inf | |
self.delta = delta | |
def __call__(self, val_loss, model, path): | |
score = -val_loss | |
if self.best_score is None: | |
self.best_score = score | |
self.save_checkpoint(val_loss, model, path) | |
elif score < self.best_score + self.delta: | |
self.counter += 1 | |
print(f'EarlyStopping counter: {self.counter} out of {self.patience}') | |
if self.counter >= self.patience: | |
self.early_stop = True | |
else: | |
self.best_score = score | |
self.save_checkpoint(val_loss, model, path) | |
self.counter = 0 | |
def save_checkpoint(self, val_loss, model, path): | |
if self.verbose: | |
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') | |
torch.save(model.state_dict(), path + '/' + 'checkpoint.pth') | |
self.val_loss_min = val_loss | |
class dotdict(dict): | |
"""dot.notation access to dictionary attributes""" | |
__getattr__ = dict.get | |
__setattr__ = dict.__setitem__ | |
__delattr__ = dict.__delitem__ | |
class StandardScaler(): | |
def __init__(self, mean, std): | |
self.mean = mean | |
self.std = std | |
def transform(self, data): | |
return (data - self.mean) / self.std | |
def inverse_transform(self, data): | |
return (data * self.std) + self.mean | |
def visual(true, preds=None, name='./pic/test.pdf'): | |
""" | |
Results visualization | |
""" | |
plt.figure() | |
plt.plot(true, label='GroundTruth', linewidth=2) | |
if preds is not None: | |
plt.plot(preds, label='Prediction', linewidth=2) | |
plt.legend() | |
plt.savefig(name, bbox_inches='tight') | |
def adjustment(gt, pred): | |
anomaly_state = False | |
for i in range(len(gt)): | |
if gt[i] == 1 and pred[i] == 1 and not anomaly_state: | |
anomaly_state = True | |
for j in range(i, 0, -1): | |
if gt[j] == 0: | |
break | |
else: | |
if pred[j] == 0: | |
pred[j] = 1 | |
for j in range(i, len(gt)): | |
if gt[j] == 0: | |
break | |
else: | |
if pred[j] == 0: | |
pred[j] = 1 | |
elif gt[i] == 0: | |
anomaly_state = False | |
if anomaly_state: | |
pred[i] = 1 | |
return gt, pred | |
def cal_accuracy(y_pred, y_true): | |
return np.mean(y_pred == y_true) | |
def custom_collate(batch): | |
r"""source: pytorch 1.9.0, only one modification to original code """ | |
elem = batch[0] | |
elem_type = type(elem) | |
if isinstance(elem, torch.Tensor): | |
out = None | |
if torch.utils.data.get_worker_info() is not None: | |
# If we're in a background process, concatenate directly into a | |
# shared memory tensor to avoid an extra copy | |
numel = sum([x.numel() for x in batch]) | |
storage = elem.storage()._new_shared(numel) | |
out = elem.new(storage) | |
return torch.stack(batch, 0, out=out) | |
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ | |
and elem_type.__name__ != 'string_': | |
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': | |
# array of string classes and object | |
if np_str_obj_array_pattern.search(elem.dtype.str) is not None: | |
raise TypeError(default_collate_err_msg_format.format(elem.dtype)) | |
return custom_collate([torch.as_tensor(b) for b in batch]) | |
elif elem.shape == (): # scalars | |
return torch.as_tensor(batch) | |
elif isinstance(elem, float): | |
return torch.tensor(batch, dtype=torch.float64) | |
elif isinstance(elem, int): | |
return torch.tensor(batch) | |
elif isinstance(elem, str): | |
return batch | |
elif isinstance(elem, collections.abc.Mapping): | |
return {key: custom_collate([d[key] for d in batch]) for key in elem} | |
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple | |
return elem_type(*(custom_collate(samples) for samples in zip(*batch))) | |
elif isinstance(elem, collections.abc.Sequence): | |
# check to make sure that the elements in batch have consistent size | |
it = iter(batch) | |
elem_size = len(next(it)) | |
if not all(len(elem) == elem_size for elem in it): | |
raise RuntimeError('each element in list of batch should be of equal size') | |
transposed = zip(*batch) | |
return [custom_collate(samples) for samples in transposed] | |
raise TypeError(default_collate_err_msg_format.format(elem_type)) | |
class HiddenPrints: | |
def __init__(self, rank): | |
# 如果rank是none,那么就是单机单卡,不需要隐藏打印,将rank设置为0 | |
if rank is None: | |
rank = 0 | |
self.rank = rank | |
def __enter__(self): | |
if self.rank == 0: | |
return | |
self._original_stdout = sys.stdout | |
sys.stdout = open(os.devnull, 'w') | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
if self.rank == 0: | |
return | |
sys.stdout.close() | |
sys.stdout = self._original_stdout | |