Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import pandas as pd | |
import glob | |
import re | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
from sklearn.preprocessing import StandardScaler | |
from utils.timefeatures import time_features | |
from data_provider.m4 import M4Dataset, M4Meta | |
from data_provider.uea import subsample, interpolate_missing, Normalizer | |
from sktime.datasets import load_from_tsfile_to_dataframe | |
import warnings | |
from utils.augmentation import run_augmentation_single | |
warnings.filterwarnings('ignore') | |
class TIDE_LEVEL_15MIN_MULTI(Dataset): | |
def __init__(self, args, root_path, flag='train', size=None, | |
features='MS', data_path='DT_0020.csv', | |
target='tide_level', scale=True, timeenc=1, freq='15min', seasonal_patterns=None): | |
# size [seq_len, label_len, pred_len] | |
self.args = args | |
# info | |
if size == None: | |
self.seq_len = 24 * 4 * 4 | |
self.label_len = 24 * 4 | |
self.pred_len = 24 * 4 | |
else: | |
self.seq_len = size[0] | |
self.label_len = size[1] | |
self.pred_len = size[2] | |
# init | |
assert flag in ['train', 'test', 'val'] | |
type_map = {'train': 0, 'val': 1, 'test': 2} | |
self.set_type = type_map[flag] | |
self.features = features | |
self.target = target | |
self.scale = scale | |
self.timeenc = timeenc | |
self.freq = freq | |
self.root_path = root_path | |
self.data_path = data_path | |
self.__read_data__() | |
def __read_data__(self): | |
self.scaler = StandardScaler() | |
df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) | |
# Dynamically calculate data split points | |
data_len = len(df_raw) | |
train_ratio = 0.7 | |
val_ratio = 0.1 | |
# test_ratio is implicitly 1 - train_ratio - val_ratio | |
train_len = int(data_len * train_ratio) | |
val_len = int(data_len * val_ratio) | |
test_len = data_len - train_len - val_len | |
border1s = [ | |
0, | |
train_len - self.seq_len, | |
train_len + val_len - self.seq_len | |
] | |
border2s = [ | |
train_len, | |
train_len + val_len, | |
data_len | |
] | |
border1 = border1s[self.set_type] | |
border2 = border2s[self.set_type] | |
if self.features == 'M' or self.features == 'MS': | |
cols_data = df_raw.columns[1:] | |
df_data = df_raw[cols_data] | |
elif self.features == 'S': | |
df_data = df_raw[[self.target]] | |
if self.scale: | |
# Scaler is fit only on the training data | |
train_data = df_data.iloc[border1s[0]:border2s[0]] | |
self.scaler.fit(train_data.values) | |
data = self.scaler.transform(df_data.values) | |
else: | |
data = df_data.values | |
df_stamp = df_raw[['date']][border1:border2] | |
df_stamp['date'] = pd.to_datetime(df_stamp['date']) | |
if self.timeenc == 0: | |
df_stamp['month'] = df_stamp['date'].apply(lambda row: row.month) | |
df_stamp['day'] = df_stamp['date'].apply(lambda row: row.day) | |
df_stamp['weekday'] = df_stamp['date'].apply(lambda row: row.weekday()) | |
df_stamp['hour'] = df_stamp['date'].apply(lambda row: row.hour) | |
df_stamp['minute'] = df_stamp['date'].apply(lambda row: row.minute // 15) | |
data_stamp = df_stamp.drop(columns=['date']).values | |
elif self.timeenc == 1: | |
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) | |
data_stamp = data_stamp.transpose(1, 0) | |
self.data_x = data[border1:border2] | |
self.data_y = data[border1:border2] | |
#if self.set_type == 0 and self.args.augmentation_ratio > 0: | |
# self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args) | |
self.data_stamp = data_stamp | |
def __getitem__(self, index): | |
s_begin = index | |
s_end = s_begin + self.seq_len | |
r_begin = s_end - self.label_len | |
r_end = r_begin + self.label_len + self.pred_len | |
seq_x = self.data_x[s_begin:s_end] | |
seq_y = self.data_y[r_begin:r_end] | |
seq_x_mark = self.data_stamp[s_begin:s_end] | |
seq_y_mark = self.data_stamp[r_begin:r_end] | |
return seq_x, seq_y, seq_x_mark, seq_y_mark | |
def __len__(self): | |
return len(self.data_x) - self.seq_len - self.pred_len + 1 | |
def inverse_transform(self, data): | |
return self.scaler.inverse_transform(data) | |
class Dataset_Pred(Dataset): | |
def __init__(self, root_path, flag='pred', size=None, | |
features='S', data_path='tide_data_DT_0001.csv', | |
target='tide_level', scale=True, inverse=False, timeenc=0, freq='t', cols=None): | |
# size [seq_len, label_len, pred_len] | |
# info | |
if size == None: | |
self.seq_len = 3 * 24 * 60 # 3일치 데이터 (4320분) | |
self.label_len = 1 * 24 * 60 # 1일치 데이터 (1440분) | |
self.pred_len = 1 * 24 * 60 # 1일치 데이터 (1440분) | |
else: | |
self.seq_len = size[0] | |
self.label_len = size[1] | |
self.pred_len = size[2] | |
# init | |
assert flag in ['pred'] | |
self.features = features | |
self.target = target | |
self.scale = scale | |
self.inverse = inverse | |
self.timeenc = timeenc | |
self.freq = freq | |
self.cols = cols | |
self.root_path = root_path | |
self.data_path = data_path | |
self.__read_data__() | |
def __read_data__(self): | |
self.scaler = StandardScaler() | |
df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) | |
# Dynamically calculate data split points | |
data_len = len(df_raw) | |
train_ratio = 0.7 | |
val_ratio = 0.1 | |
# test_ratio is implicitly 1 - train_ratio - val_ratio | |
train_len = int(data_len * train_ratio) | |
val_len = int(data_len * val_ratio) | |
test_len = data_len - train_len - val_len | |
border1s = [ | |
0, | |
train_len - self.seq_len, | |
train_len + val_len - self.seq_len | |
] | |
border2s = [ | |
train_len, | |
train_len + val_len, | |
data_len | |
] | |
border1 = border1s[self.set_type] | |
border2 = border2s[self.set_type] | |
if self.features == 'M' or self.features == 'MS': | |
cols_data = df_raw.columns[1:] | |
df_data = df_raw[cols_data] | |
elif self.features == 'S': | |
df_data = df_raw[[self.target]] | |
if self.scale: | |
# Scaler is fit only on the training data | |
train_data = df_data.iloc[border1s[0]:border2s[0]] | |
self.scaler.fit(train_data.values) | |
data = self.scaler.transform(df_data.values) | |
else: | |
data = df_data.values | |
df_stamp = df_raw[['date']][border1:border2] | |
df_stamp['date'] = pd.to_datetime(df_stamp['date']) | |
if self.timeenc == 0: | |
df_stamp['month'] = df_stamp['date'].apply(lambda row: row.month) | |
df_stamp['day'] = df_stamp['date'].apply(lambda row: row.day) | |
df_stamp['weekday'] = df_stamp['date'].apply(lambda row: row.weekday()) | |
df_stamp['hour'] = df_stamp['date'].apply(lambda row: row.hour) | |
df_stamp['minute'] = df_stamp['date'].apply(lambda row: row.minute // 15) | |
data_stamp = df_stamp.drop(columns=['date']).values | |
elif self.timeenc == 1: | |
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) | |
data_stamp = data_stamp.transpose(1, 0) | |
self.data_x = data[border1:border2] | |
self.data_y = data[border1:border2] | |
if self.set_type == 0 and self.args.augmentation_ratio > 0: | |
self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args) | |
self.data_stamp = data_stamp | |
def __getitem__(self, index): | |
s_begin = index | |
s_end = s_begin + self.seq_len | |
r_begin = s_end - self.label_len | |
r_end = r_begin + self.label_len + self.pred_len | |
seq_x = self.data_x[s_begin:s_end] | |
if self.inverse: | |
seq_y = self.data_x[r_begin:r_begin + self.label_len] | |
else: | |
seq_y = self.data_y[r_begin:r_begin + self.label_len] | |
seq_x_mark = self.data_stamp[s_begin:s_end] | |
seq_y_mark = self.data_stamp[r_begin:r_end] | |
return seq_x, seq_y, seq_x_mark, seq_y_mark | |
def __len__(self): | |
return len(self.data_x) - self.seq_len + 1 | |
def inverse_transform(self, data): | |
return self.scaler.inverse_transform(data) | |
class Dataset_ETT_hour(Dataset): | |
def __init__(self, args, root_path, flag='train', size=None, | |
features='S', data_path='ETTh1.csv', | |
target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None): | |
# size [seq_len, label_len, pred_len] | |
self.args = args | |
# info | |
if size == None: | |
self.seq_len = 24 * 4 * 4 | |
self.label_len = 24 * 4 | |
self.pred_len = 24 * 4 | |
else: | |
self.seq_len = size[0] | |
self.label_len = size[1] | |
self.pred_len = size[2] | |
# init | |
assert flag in ['train', 'test', 'val'] | |
type_map = {'train': 0, 'val': 1, 'test': 2} | |
self.set_type = type_map[flag] | |
self.features = features | |
self.target = target | |
self.scale = scale | |
self.timeenc = timeenc | |
self.freq = freq | |
self.root_path = root_path | |
self.data_path = data_path | |
self.__read_data__() | |
def __read_data__(self): | |
self.scaler = StandardScaler() | |
df_raw = pd.read_csv(os.path.join(self.root_path, | |
self.data_path)) | |
border1s = [0, 12 * 30 * 24 - self.seq_len, 12 * 30 * 24 + 4 * 30 * 24 - self.seq_len] | |
border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24] | |
border1 = border1s[self.set_type] | |
border2 = border2s[self.set_type] | |
if self.features == 'M' or self.features == 'MS': | |
cols_data = df_raw.columns[1:] | |
df_data = df_raw[cols_data] | |
elif self.features == 'S': | |
df_data = df_raw[[self.target]] | |
if self.scale: | |
train_data = df_data[border1s[0]:border2s[0]] | |
self.scaler.fit(train_data.values) | |
data = self.scaler.transform(df_data.values) | |
else: | |
data = df_data.values | |
df_stamp = df_raw[['date']][border1:border2] | |
df_stamp['date'] = pd.to_datetime(df_stamp.date) | |
if self.timeenc == 0: | |
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) | |
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) | |
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) | |
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) | |
data_stamp = df_stamp.drop(['date'], 1).values | |
elif self.timeenc == 1: | |
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) | |
data_stamp = data_stamp.transpose(1, 0) | |
self.data_x = data[border1:border2] | |
self.data_y = data[border1:border2] | |
if self.set_type == 0 and self.args.augmentation_ratio > 0: | |
self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args) | |
self.data_stamp = data_stamp | |
def __getitem__(self, index): | |
s_begin = index | |
s_end = s_begin + self.seq_len | |
r_begin = s_end - self.label_len | |
r_end = r_begin + self.label_len + self.pred_len | |
seq_x = self.data_x[s_begin:s_end] | |
seq_y = self.data_y[r_begin:r_end] | |
seq_x_mark = self.data_stamp[s_begin:s_end] | |
seq_y_mark = self.data_stamp[r_begin:r_end] | |
return seq_x, seq_y, seq_x_mark, seq_y_mark | |
def __len__(self): | |
return len(self.data_x) - self.seq_len - self.pred_len + 1 | |
def inverse_transform(self, data): | |
return self.scaler.inverse_transform(data) | |
class Dataset_ETT_minute(Dataset): | |
def __init__(self, args, root_path, flag='train', size=None, | |
features='S', data_path='ETTm1.csv', | |
target='OT', scale=True, timeenc=0, freq='t', seasonal_patterns=None): | |
# size [seq_len, label_len, pred_len] | |
self.args = args | |
# info | |
if size == None: | |
self.seq_len = 24 * 4 * 4 | |
self.label_len = 24 * 4 | |
self.pred_len = 24 * 4 | |
else: | |
self.seq_len = size[0] | |
self.label_len = size[1] | |
self.pred_len = size[2] | |
# init | |
assert flag in ['train', 'test', 'val'] | |
type_map = {'train': 0, 'val': 1, 'test': 2} | |
self.set_type = type_map[flag] | |
self.features = features | |
self.target = target | |
self.scale = scale | |
self.timeenc = timeenc | |
self.freq = freq | |
self.root_path = root_path | |
self.data_path = data_path | |
self.__read_data__() | |
def __read_data__(self): | |
self.scaler = StandardScaler() | |
df_raw = pd.read_csv(os.path.join(self.root_path, | |
self.data_path)) | |
border1s = [0, 12 * 30 * 24 * 4 - self.seq_len, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 - self.seq_len] | |
border2s = [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4] | |
border1 = border1s[self.set_type] | |
border2 = border2s[self.set_type] | |
if self.features == 'M' or self.features == 'MS': | |
cols_data = df_raw.columns[1:] | |
df_data = df_raw[cols_data] | |
elif self.features == 'S': | |
df_data = df_raw[[self.target]] | |
if self.scale: | |
train_data = df_data[border1s[0]:border2s[0]] | |
self.scaler.fit(train_data.values) | |
data = self.scaler.transform(df_data.values) | |
else: | |
data = df_data.values | |
df_stamp = df_raw[['date']][border1:border2] | |
df_stamp['date'] = pd.to_datetime(df_stamp.date) | |
if self.timeenc == 0: | |
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) | |
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) | |
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) | |
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) | |
df_stamp['minute'] = df_stamp.date.apply(lambda row: row.minute, 1) | |
df_stamp['minute'] = df_stamp.minute.map(lambda x: x // 15) | |
data_stamp = df_stamp.drop(['date'], 1).values | |
elif self.timeenc == 1: | |
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) | |
data_stamp = data_stamp.transpose(1, 0) | |
self.data_x = data[border1:border2] | |
self.data_y = data[border1:border2] | |
if self.set_type == 0 and self.args.augmentation_ratio > 0: | |
self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args) | |
self.data_stamp = data_stamp | |
def __getitem__(self, index): | |
s_begin = index | |
s_end = s_begin + self.seq_len | |
r_begin = s_end - self.label_len | |
r_end = r_begin + self.label_len + self.pred_len | |
seq_x = self.data_x[s_begin:s_end] | |
seq_y = self.data_y[r_begin:r_end] | |
seq_x_mark = self.data_stamp[s_begin:s_end] | |
seq_y_mark = self.data_stamp[r_begin:r_end] | |
return seq_x, seq_y, seq_x_mark, seq_y_mark | |
def __len__(self): | |
return len(self.data_x) - self.seq_len - self.pred_len + 1 | |
def inverse_transform(self, data): | |
return self.scaler.inverse_transform(data) | |
class Dataset_Custom(Dataset): | |
def __init__(self, args, root_path, flag='train', size=None, | |
features='S', data_path='ETTh1.csv', | |
target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None): | |
# size [seq_len, label_len, pred_len] | |
self.args = args | |
# info | |
if size == None: | |
self.seq_len = 24 * 4 * 4 | |
self.label_len = 24 * 4 | |
self.pred_len = 24 * 4 | |
else: | |
self.seq_len = size[0] | |
self.label_len = size[1] | |
self.pred_len = size[2] | |
# init | |
assert flag in ['train', 'test', 'val'] | |
type_map = {'train': 0, 'val': 1, 'test': 2} | |
self.set_type = type_map[flag] | |
self.features = features | |
self.target = target | |
self.scale = scale | |
self.timeenc = timeenc | |
self.freq = freq | |
self.root_path = root_path | |
self.data_path = data_path | |
self.__read_data__() | |
def __read_data__(self): | |
self.scaler = StandardScaler() | |
df_raw = pd.read_csv(os.path.join(self.root_path, | |
self.data_path)) | |
''' | |
df_raw.columns: ['date', ...(other features), target feature] | |
''' | |
cols = list(df_raw.columns) | |
cols.remove(self.target) | |
cols.remove('date') | |
df_raw = df_raw[['date'] + cols + [self.target]] | |
num_train = int(len(df_raw) * 0.7) | |
num_test = int(len(df_raw) * 0.2) | |
num_vali = len(df_raw) - num_train - num_test | |
border1s = [0, num_train - self.seq_len, len(df_raw) - num_test - self.seq_len] | |
border2s = [num_train, num_train + num_vali, len(df_raw)] | |
border1 = border1s[self.set_type] | |
border2 = border2s[self.set_type] | |
if self.features == 'M' or self.features == 'MS': | |
cols_data = df_raw.columns[1:] | |
df_data = df_raw[cols_data] | |
elif self.features == 'S': | |
df_data = df_raw[[self.target]] | |
if self.scale: | |
train_data = df_data[border1s[0]:border2s[0]] | |
self.scaler.fit(train_data.values) | |
data = self.scaler.transform(df_data.values) | |
else: | |
data = df_data.values | |
df_stamp = df_raw[['date']][border1:border2] | |
df_stamp['date'] = pd.to_datetime(df_stamp.date) | |
if self.timeenc == 0: | |
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) | |
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) | |
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) | |
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) | |
data_stamp = df_stamp.drop(['date'], 1).values | |
elif self.timeenc == 1: | |
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) | |
data_stamp = data_stamp.transpose(1, 0) | |
self.data_x = data[border1:border2] | |
self.data_y = data[border1:border2] | |
if self.set_type == 0 and self.args.augmentation_ratio > 0: | |
self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args) | |
self.data_stamp = data_stamp | |
def __getitem__(self, index): | |
s_begin = index | |
s_end = s_begin + self.seq_len | |
r_begin = s_end - self.label_len | |
r_end = r_begin + self.label_len + self.pred_len | |
seq_x = self.data_x[s_begin:s_end] | |
seq_y = self.data_y[r_begin:r_end] | |
seq_x_mark = self.data_stamp[s_begin:s_end] | |
seq_y_mark = self.data_stamp[r_begin:r_end] | |
return seq_x, seq_y, seq_x_mark, seq_y_mark | |
def __len__(self): | |
return len(self.data_x) - self.seq_len - self.pred_len + 1 | |
def inverse_transform(self, data): | |
return self.scaler.inverse_transform(data) | |
class Dataset_M4(Dataset): | |
def __init__(self, args, root_path, flag='pred', size=None, | |
features='S', data_path='ETTh1.csv', | |
target='OT', scale=False, inverse=False, timeenc=0, freq='15min', | |
seasonal_patterns='Yearly'): | |
# size [seq_len, label_len, pred_len] | |
# init | |
self.features = features | |
self.target = target | |
self.scale = scale | |
self.inverse = inverse | |
self.timeenc = timeenc | |
self.root_path = root_path | |
self.seq_len = size[0] | |
self.label_len = size[1] | |
self.pred_len = size[2] | |
self.seasonal_patterns = seasonal_patterns | |
self.history_size = M4Meta.history_size[seasonal_patterns] | |
self.window_sampling_limit = int(self.history_size * self.pred_len) | |
self.flag = flag | |
self.__read_data__() | |
def __read_data__(self): | |
# M4Dataset.initialize() | |
if self.flag == 'train': | |
dataset = M4Dataset.load(training=True, dataset_file=self.root_path) | |
else: | |
dataset = M4Dataset.load(training=False, dataset_file=self.root_path) | |
training_values = np.array( | |
[v[~np.isnan(v)] for v in | |
dataset.values[dataset.groups == self.seasonal_patterns]]) # split different frequencies | |
self.ids = np.array([i for i in dataset.ids[dataset.groups == self.seasonal_patterns]]) | |
self.timeseries = [ts for ts in training_values] | |
def __getitem__(self, index): | |
insample = np.zeros((self.seq_len, 1)) | |
insample_mask = np.zeros((self.seq_len, 1)) | |
outsample = np.zeros((self.pred_len + self.label_len, 1)) | |
outsample_mask = np.zeros((self.pred_len + self.label_len, 1)) # m4 dataset | |
sampled_timeseries = self.timeseries[index] | |
cut_point = np.random.randint(low=max(1, len(sampled_timeseries) - self.window_sampling_limit), | |
high=len(sampled_timeseries), | |
size=1)[0] | |
insample_window = sampled_timeseries[max(0, cut_point - self.seq_len):cut_point] | |
insample[-len(insample_window):, 0] = insample_window | |
insample_mask[-len(insample_window):, 0] = 1.0 | |
outsample_window = sampled_timeseries[ | |
cut_point - self.label_len:min(len(sampled_timeseries), cut_point + self.pred_len)] | |
outsample[:len(outsample_window), 0] = outsample_window | |
outsample_mask[:len(outsample_window), 0] = 1.0 | |
return insample, outsample, insample_mask, outsample_mask | |
def __len__(self): | |
return len(self.timeseries) | |
def inverse_transform(self, data): | |
return self.scaler.inverse_transform(data) | |
def last_insample_window(self): | |
""" | |
The last window of insample size of all timeseries. | |
This function does not support batching and does not reshuffle timeseries. | |
:return: Last insample window of all timeseries. Shape "timeseries, insample size" | |
""" | |
insample = np.zeros((len(self.timeseries), self.seq_len)) | |
insample_mask = np.zeros((len(self.timeseries), self.seq_len)) | |
for i, ts in enumerate(self.timeseries): | |
ts_last_window = ts[-self.seq_len:] | |
insample[i, -len(ts):] = ts_last_window | |
insample_mask[i, -len(ts):] = 1.0 | |
return insample, insample_mask | |
class PSMSegLoader(Dataset): | |
def __init__(self, args, root_path, win_size, step=1, flag="train"): | |
self.flag = flag | |
self.step = step | |
self.win_size = win_size | |
self.scaler = StandardScaler() | |
data = pd.read_csv(os.path.join(root_path, 'train.csv')) | |
data = data.values[:, 1:] | |
data = np.nan_to_num(data) | |
self.scaler.fit(data) | |
data = self.scaler.transform(data) | |
test_data = pd.read_csv(os.path.join(root_path, 'test.csv')) | |
test_data = test_data.values[:, 1:] | |
test_data = np.nan_to_num(test_data) | |
self.test = self.scaler.transform(test_data) | |
self.train = data | |
data_len = len(self.train) | |
self.val = self.train[(int)(data_len * 0.8):] | |
self.test_labels = pd.read_csv(os.path.join(root_path, 'test_label.csv')).values[:, 1:] | |
print("test:", self.test.shape) | |
print("train:", self.train.shape) | |
def __len__(self): | |
if self.flag == "train": | |
return (self.train.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'val'): | |
return (self.val.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'test'): | |
return (self.test.shape[0] - self.win_size) // self.step + 1 | |
else: | |
return (self.test.shape[0] - self.win_size) // self.win_size + 1 | |
def __getitem__(self, index): | |
index = index * self.step | |
if self.flag == "train": | |
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'val'): | |
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'test'): | |
return np.float32(self.test[index:index + self.win_size]), np.float32( | |
self.test_labels[index:index + self.win_size]) | |
else: | |
return np.float32(self.test[ | |
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32( | |
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]) | |
class MSLSegLoader(Dataset): | |
def __init__(self, args, root_path, win_size, step=1, flag="train"): | |
self.flag = flag | |
self.step = step | |
self.win_size = win_size | |
self.scaler = StandardScaler() | |
data = np.load(os.path.join(root_path, "MSL_train.npy")) | |
self.scaler.fit(data) | |
data = self.scaler.transform(data) | |
test_data = np.load(os.path.join(root_path, "MSL_test.npy")) | |
self.test = self.scaler.transform(test_data) | |
self.train = data | |
data_len = len(self.train) | |
self.val = self.train[(int)(data_len * 0.8):] | |
self.test_labels = np.load(os.path.join(root_path, "MSL_test_label.npy")) | |
print("test:", self.test.shape) | |
print("train:", self.train.shape) | |
def __len__(self): | |
if self.flag == "train": | |
return (self.train.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'val'): | |
return (self.val.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'test'): | |
return (self.test.shape[0] - self.win_size) // self.step + 1 | |
else: | |
return (self.test.shape[0] - self.win_size) // self.win_size + 1 | |
def __getitem__(self, index): | |
index = index * self.step | |
if self.flag == "train": | |
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'val'): | |
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'test'): | |
return np.float32(self.test[index:index + self.win_size]), np.float32( | |
self.test_labels[index:index + self.win_size]) | |
else: | |
return np.float32(self.test[ | |
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32( | |
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]) | |
class SMAPSegLoader(Dataset): | |
def __init__(self, args, root_path, win_size, step=1, flag="train"): | |
self.flag = flag | |
self.step = step | |
self.win_size = win_size | |
self.scaler = StandardScaler() | |
data = np.load(os.path.join(root_path, "SMAP_train.npy")) | |
self.scaler.fit(data) | |
data = self.scaler.transform(data) | |
test_data = np.load(os.path.join(root_path, "SMAP_test.npy")) | |
self.test = self.scaler.transform(test_data) | |
self.train = data | |
data_len = len(self.train) | |
self.val = self.train[(int)(data_len * 0.8):] | |
self.test_labels = np.load(os.path.join(root_path, "SMAP_test_label.npy")) | |
print("test:", self.test.shape) | |
print("train:", self.train.shape) | |
def __len__(self): | |
if self.flag == "train": | |
return (self.train.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'val'): | |
return (self.val.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'test'): | |
return (self.test.shape[0] - self.win_size) // self.step + 1 | |
else: | |
return (self.test.shape[0] - self.win_size) // self.win_size + 1 | |
def __getitem__(self, index): | |
index = index * self.step | |
if self.flag == "train": | |
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'val'): | |
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'test'): | |
return np.float32(self.test[index:index + self.win_size]), np.float32( | |
self.test_labels[index:index + self.win_size]) | |
else: | |
return np.float32(self.test[ | |
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32( | |
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]) | |
class SMDSegLoader(Dataset): | |
def __init__(self, args, root_path, win_size, step=100, flag="train"): | |
self.flag = flag | |
self.step = step | |
self.win_size = win_size | |
self.scaler = StandardScaler() | |
data = np.load(os.path.join(root_path, "SMD_train.npy")) | |
self.scaler.fit(data) | |
data = self.scaler.transform(data) | |
test_data = np.load(os.path.join(root_path, "SMD_test.npy")) | |
self.test = self.scaler.transform(test_data) | |
self.train = data | |
data_len = len(self.train) | |
self.val = self.train[(int)(data_len * 0.8):] | |
self.test_labels = np.load(os.path.join(root_path, "SMD_test_label.npy")) | |
def __len__(self): | |
if self.flag == "train": | |
return (self.train.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'val'): | |
return (self.val.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'test'): | |
return (self.test.shape[0] - self.win_size) // self.step + 1 | |
else: | |
return (self.test.shape[0] - self.win_size) // self.win_size + 1 | |
def __getitem__(self, index): | |
index = index * self.step | |
if self.flag == "train": | |
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'val'): | |
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'test'): | |
return np.float32(self.test[index:index + self.win_size]), np.float32( | |
self.test_labels[index:index + self.win_size]) | |
else: | |
return np.float32(self.test[ | |
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32( | |
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]) | |
class SWATSegLoader(Dataset): | |
def __init__(self, args, root_path, win_size, step=1, flag="train"): | |
self.flag = flag | |
self.step = step | |
self.win_size = win_size | |
self.scaler = StandardScaler() | |
train_data = pd.read_csv(os.path.join(root_path, 'swat_train2.csv')) | |
test_data = pd.read_csv(os.path.join(root_path, 'swat2.csv')) | |
labels = test_data.values[:, -1:] | |
train_data = train_data.values[:, :-1] | |
test_data = test_data.values[:, :-1] | |
self.scaler.fit(train_data) | |
train_data = self.scaler.transform(train_data) | |
test_data = self.scaler.transform(test_data) | |
self.train = train_data | |
self.test = test_data | |
data_len = len(self.train) | |
self.val = self.train[(int)(data_len * 0.8):] | |
self.test_labels = labels | |
print("test:", self.test.shape) | |
print("train:", self.train.shape) | |
def __len__(self): | |
""" | |
Number of images in the object dataset. | |
""" | |
if self.flag == "train": | |
return (self.train.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'val'): | |
return (self.val.shape[0] - self.win_size) // self.step + 1 | |
elif (self.flag == 'test'): | |
return (self.test.shape[0] - self.win_size) // self.step + 1 | |
else: | |
return (self.test.shape[0] - self.win_size) // self.win_size + 1 | |
def __getitem__(self, index): | |
index = index * self.step | |
if self.flag == "train": | |
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'val'): | |
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size]) | |
elif (self.flag == 'test'): | |
return np.float32(self.test[index:index + self.win_size]), np.float32( | |
self.test_labels[index:index + self.win_size]) | |
else: | |
return np.float32(self.test[ | |
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32( | |
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]) | |
class UEAloader(Dataset): | |
""" | |
Dataset class for datasets included in: | |
Time Series Classification Archive (www.timeseriesclassification.com) | |
Argument: | |
limit_size: float in (0, 1) for debug | |
Attributes: | |
all_df: (num_samples * seq_len, num_columns) dataframe indexed by integer indices, with multiple rows corresponding to the same index (sample). | |
Each row is a time step; Each column contains either metadata (e.g. timestamp) or a feature. | |
feature_df: (num_samples * seq_len, feat_dim) dataframe; contains the subset of columns of `all_df` which correspond to selected features | |
feature_names: names of columns contained in `feature_df` (same as feature_df.columns) | |
all_IDs: (num_samples,) series of IDs contained in `all_df`/`feature_df` (same as all_df.index.unique() ) | |
labels_df: (num_samples, num_labels) pd.DataFrame of label(s) for each sample | |
max_seq_len: maximum sequence (time series) length. If None, script argument `max_seq_len` will be used. | |
(Moreover, script argument overrides this attribute) | |
""" | |
def __init__(self, args, root_path, file_list=None, limit_size=None, flag=None): | |
self.args = args | |
self.root_path = root_path | |
self.flag = flag | |
self.all_df, self.labels_df = self.load_all(root_path, file_list=file_list, flag=flag) | |
self.all_IDs = self.all_df.index.unique() # all sample IDs (integer indices 0 ... num_samples-1) | |
if limit_size is not None: | |
if limit_size > 1: | |
limit_size = int(limit_size) | |
else: # interpret as proportion if in (0, 1] | |
limit_size = int(limit_size * len(self.all_IDs)) | |
self.all_IDs = self.all_IDs[:limit_size] | |
self.all_df = self.all_df.loc[self.all_IDs] | |
# use all features | |
self.feature_names = self.all_df.columns | |
self.feature_df = self.all_df | |
# pre_process | |
normalizer = Normalizer() | |
self.feature_df = normalizer.normalize(self.feature_df) | |
print(len(self.all_IDs)) | |
def load_all(self, root_path, file_list=None, flag=None): | |
""" | |
Loads datasets from csv files contained in `root_path` into a dataframe, optionally choosing from `pattern` | |
Args: | |
root_path: directory containing all individual .csv files | |
file_list: optionally, provide a list of file paths within `root_path` to consider. | |
Otherwise, entire `root_path` contents will be used. | |
Returns: | |
all_df: a single (possibly concatenated) dataframe with all data corresponding to specified files | |
labels_df: dataframe containing label(s) for each sample | |
""" | |
# Select paths for training and evaluation | |
if file_list is None: | |
data_paths = glob.glob(os.path.join(root_path, '*')) # list of all paths | |
else: | |
data_paths = [os.path.join(root_path, p) for p in file_list] | |
if len(data_paths) == 0: | |
raise Exception('No files found using: {}'.format(os.path.join(root_path, '*'))) | |
if flag is not None: | |
data_paths = list(filter(lambda x: re.search(flag, x), data_paths)) | |
input_paths = [p for p in data_paths if os.path.isfile(p) and p.endswith('.ts')] | |
if len(input_paths) == 0: | |
pattern='*.ts' | |
raise Exception("No .ts files found using pattern: '{}'".format(pattern)) | |
all_df, labels_df = self.load_single(input_paths[0]) # a single file contains dataset | |
return all_df, labels_df | |
def load_single(self, filepath): | |
df, labels = load_from_tsfile_to_dataframe(filepath, return_separate_X_and_y=True, | |
replace_missing_vals_with='NaN') | |
labels = pd.Series(labels, dtype="category") | |
self.class_names = labels.cat.categories | |
labels_df = pd.DataFrame(labels.cat.codes, | |
dtype=np.int8) # int8-32 gives an error when using nn.CrossEntropyLoss | |
lengths = df.applymap( | |
lambda x: len(x)).values # (num_samples, num_dimensions) array containing the length of each series | |
horiz_diffs = np.abs(lengths - np.expand_dims(lengths[:, 0], -1)) | |
if np.sum(horiz_diffs) > 0: # if any row (sample) has varying length across dimensions | |
df = df.applymap(subsample) | |
lengths = df.applymap(lambda x: len(x)).values | |
vert_diffs = np.abs(lengths - np.expand_dims(lengths[0, :], 0)) | |
if np.sum(vert_diffs) > 0: # if any column (dimension) has varying length across samples | |
self.max_seq_len = int(np.max(lengths[:, 0])) | |
else: | |
self.max_seq_len = lengths[0, 0] | |
# First create a (seq_len, feat_dim) dataframe for each sample, indexed by a single integer ("ID" of the sample) | |
# Then concatenate into a (num_samples * seq_len, feat_dim) dataframe, with multiple rows corresponding to the | |
# sample index (i.e. the same scheme as all datasets in this project) | |
df = pd.concat((pd.DataFrame({col: df.loc[row, col] for col in df.columns}).reset_index(drop=True).set_index( | |
pd.Series(lengths[row, 0] * [row])) for row in range(df.shape[0])), axis=0) | |
# Replace NaN values | |
grp = df.groupby(by=df.index) | |
df = grp.transform(interpolate_missing) | |
return df, labels_df | |
def instance_norm(self, case): | |
if self.root_path.count('EthanolConcentration') > 0: # special process for numerical stability | |
mean = case.mean(0, keepdim=True) | |
case = case - mean | |
stdev = torch.sqrt(torch.var(case, dim=1, keepdim=True, unbiased=False) + 1e-5) | |
case /= stdev | |
return case | |
else: | |
return case | |
def __getitem__(self, ind): | |
batch_x = self.feature_df.loc[self.all_IDs[ind]].values | |
labels = self.labels_df.loc[self.all_IDs[ind]].values | |
if self.flag == "TRAIN" and self.args.augmentation_ratio > 0: | |
num_samples = len(self.all_IDs) | |
num_columns = self.feature_df.shape[1] | |
seq_len = int(self.feature_df.shape[0] / num_samples) | |
batch_x = batch_x.reshape((1, seq_len, num_columns)) | |
batch_x, labels, augmentation_tags = run_augmentation_single(batch_x, labels, self.args) | |
batch_x = batch_x.reshape((1 * seq_len, num_columns)) | |
return self.instance_norm(torch.from_numpy(batch_x)), \ | |
torch.from_numpy(labels) | |
def __len__(self): | |
return len(self.all_IDs) | |
class Dataset_Meteorology(Dataset): | |
def __init__(self, args, root_path, flag='train', size=None, | |
features='S', data_path='ETTh1.csv', | |
target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None): | |
# size [seq_len, label_len, pred_len] | |
# info | |
if size == None: | |
self.seq_len = 24 * 4 * 4 | |
self.label_len = 24 * 4 | |
self.pred_len = 24 * 4 | |
else: | |
self.seq_len = size[0] | |
self.label_len = size[1] | |
self.pred_len = size[2] | |
# init | |
assert flag in ['train', 'test', 'val'] | |
type_map = {'train': 0, 'val': 1, 'test': 2} | |
self.set_type = type_map[flag] | |
self.features = features | |
self.target = target | |
self.scale = scale | |
self.timeenc = timeenc | |
self.freq = freq | |
self.root_path = root_path | |
self.data_path = data_path | |
self.__read_data__() | |
self.stations_num = self.data_x.shape[-1] | |
self.tot_len = len(self.data_x) - self.seq_len - self.pred_len + 1 | |
def __read_data__(self): | |
self.scaler = StandardScaler() | |
data = np.load(os.path.join(self.root_path, self.data_path)) # (L, S, 1) | |
data = np.squeeze(data) # (L S) | |
era5 = np.load(os.path.join(self.root_path, 'era5_norm.npy')) | |
# new add | |
era5 = era5.reshape((era5.shape[0], 4, 9, era5.shape[-1])) | |
repeat_era5 = np.repeat(era5, 3, axis=0)[:len(data), :, :, :] # (L, 4, 9, S) | |
repeat_era5 = repeat_era5.reshape(repeat_era5.shape[0], -1, repeat_era5.shape[3]) # (L, 36, S) | |
num_train = int(len(data) * 0.7) | |
num_test = int(len(data) * 0.2) | |
num_vali = len(data) - num_train - num_test | |
border1s = [0, num_train - self.seq_len, len(data) - num_test - self.seq_len] | |
border2s = [num_train, num_train + num_vali, len(data)] | |
border1 = border1s[self.set_type] | |
border2 = border2s[self.set_type] | |
if self.scale: | |
train_data = data[border1s[0]:border2s[0]] | |
self.scaler.fit(train_data) | |
data = self.scaler.transform(data) | |
else: | |
pass | |
self.data_x = data[border1:border2] | |
self.data_y = data[border1:border2] | |
self.covariate = repeat_era5[border1:border2] | |
def __getitem__(self, index): | |
station_id = index // self.tot_len | |
s_begin = index % self.tot_len | |
s_end = s_begin + self.seq_len | |
r_begin = s_end - self.label_len | |
r_end = r_begin + self.label_len + self.pred_len | |
seq_x = self.data_x[s_begin:s_end, station_id:station_id + 1] | |
seq_y = self.data_y[r_begin:r_end, station_id:station_id + 1] # (L 1) | |
t1 = self.covariate[s_begin:s_end, :, station_id:station_id + 1].squeeze() | |
t2 = self.covariate[r_begin:r_end, :, station_id:station_id + 1].squeeze() | |
seq_x = np.concatenate([t1, seq_x], axis=1) | |
seq_y = np.concatenate([t2, seq_y], axis=1) | |
seq_x_mark = torch.zeros((seq_x.shape[0], 1)) | |
seq_y_mark = torch.zeros((seq_y.shape[0], 1)) | |
return seq_x, seq_y, seq_x_mark, seq_y_mark | |
def __len__(self): | |
l = (len(self.data_x) - self.seq_len - self.pred_len + 1) * self.stations_num | |
return l | |
def inverse_transform(self, data): | |
return self.scaler.inverse_transform(data) |