Spaces:
Sleeping
Sleeping
Upload api_init.py
Browse files- api_init.py +63 -0
api_init.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
from meta_train import mmdPreModel
|
5 |
+
from collections import namedtuple
|
6 |
+
import joblib
|
7 |
+
from transformers import RobertaTokenizer, RobertaModel
|
8 |
+
|
9 |
+
|
10 |
+
def api_init():
|
11 |
+
|
12 |
+
random.seed(0)
|
13 |
+
np.random.seed(0)
|
14 |
+
torch.manual_seed(0)
|
15 |
+
torch.cuda.manual_seed(0)
|
16 |
+
torch.cuda.manual_seed_all(0)
|
17 |
+
torch.backends.cudnn.benchmark = False
|
18 |
+
torch.backends.cudnn.deterministic = True
|
19 |
+
|
20 |
+
model_name = 'roberta-base-openai-detector'
|
21 |
+
model_path_api = f'.'
|
22 |
+
token_num, hidden_size = 100, 768
|
23 |
+
|
24 |
+
Config = namedtuple('Config', ['in_dim', 'hid_dim', 'dropout', 'out_dim', 'token_num'])
|
25 |
+
config = Config(
|
26 |
+
in_dim=hidden_size,
|
27 |
+
token_num=token_num,
|
28 |
+
hid_dim=512,
|
29 |
+
dropout=0.2,
|
30 |
+
out_dim=300,)
|
31 |
+
|
32 |
+
net = mmdPreModel(config=config, num_mlp=0, transformer_flag=True, num_hidden_layers=1)
|
33 |
+
|
34 |
+
# load the features and models
|
35 |
+
feature_ref_for_test_filename = f'{model_path_api}/feature_ref_for_test.pt'
|
36 |
+
model_filename = f'{model_path_api}/logistic_regression_model.pkl'
|
37 |
+
net_filename = f'{model_path_api}/net.pt'
|
38 |
+
|
39 |
+
load_ref_data = torch.load(feature_ref_for_test_filename,map_location=torch.device('cpu')) # cpu
|
40 |
+
loaded_model = joblib.load(model_filename) # cpu
|
41 |
+
checkpoint = torch.load(net_filename,map_location=torch.device('cpu'))
|
42 |
+
net.load_state_dict(checkpoint['net'])
|
43 |
+
sigma, sigma0_u, ep = checkpoint['sigma'], checkpoint['sigma0_u'], checkpoint['ep']
|
44 |
+
|
45 |
+
# generic generative model
|
46 |
+
cache_dir = ".cache"
|
47 |
+
base_tokenizer = RobertaTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
48 |
+
base_model = RobertaModel.from_pretrained(model_name, output_hidden_states=True, cache_dir=cache_dir)
|
49 |
+
|
50 |
+
# whether load the model to gpu
|
51 |
+
gpu_using = False
|
52 |
+
|
53 |
+
DEVICE = torch.device("cpu")
|
54 |
+
if gpu_using:
|
55 |
+
DEVICE = torch.device("cuda:0")
|
56 |
+
net = net.to(DEVICE)
|
57 |
+
sigma, sigma0_u, ep = sigma.to(DEVICE), sigma0_u.to(DEVICE), ep.to(DEVICE)
|
58 |
+
load_ref_data = load_ref_data.to(DEVICE)
|
59 |
+
base_model = base_model.to(DEVICE)
|
60 |
+
num_ref = 5000
|
61 |
+
feature_ref = load_ref_data[np.random.permutation(load_ref_data.shape[0])][:num_ref].to(DEVICE)
|
62 |
+
|
63 |
+
return base_model, base_tokenizer, net, feature_ref, sigma, sigma0_u, ep, loaded_model, DEVICE
|