alvinhenrick commited on
Commit
3381d80
1 Parent(s): 13341a0

Use nuvocare/WikiMedical_sent_biobert

Browse files
medirag/core/reader.py CHANGED
@@ -7,15 +7,13 @@ from llama_index.core.readers.base import BaseReader
7
 
8
  def normalize_text(text):
9
  """Normalize the text by lowercasing, removing extra spaces, and stripping unnecessary characters."""
10
- text = text.lower() # Lowercase the text
11
- text = re.sub(r'\s+', ' ', text) # Replace multiple spaces/newlines with a single space
12
- text = re.sub(r'[^\w\s]', '', text) # Remove punctuation
13
  return text.strip()
14
 
15
 
16
  def format_output_string(drug_name, sections_data):
17
- """Format the output string for document embedding."""
18
- output = [f"Drug Name: {drug_name}"]
19
 
20
  for title, paragraphs in sections_data.items():
21
  output.append(f"{title}:")
@@ -26,34 +24,48 @@ def format_output_string(drug_name, sections_data):
26
  return "\n".join(output)
27
 
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  def parse_drug_information(soup, extra_info=None):
30
  # Extract the setId
31
  set_id = None
32
  set_id_tag = soup.find("setId")
33
  if set_id_tag:
34
  set_id = set_id_tag.get("root", None)
35
-
36
  if not set_id:
37
  return None
38
 
39
- # Ensure structured body exists
40
  structured_body = soup.find("structuredBody")
41
- if not structured_body:
42
- return None
43
 
44
  # Extract the drug name
45
- drug_name = None
46
- manufactured_product = structured_body.find("manufacturedProduct")
47
- if manufactured_product:
48
- inner_product = manufactured_product.find("manufacturedProduct")
49
- if inner_product:
50
- name_tag = inner_product.find("name")
51
- if name_tag:
52
- drug_name = name_tag.get_text(strip=True)
53
-
54
- if not drug_name:
55
  return None
56
 
 
 
57
  # Iterate over components and extract sections
58
  components = structured_body.find_all("component")
59
  sections_data = {}
@@ -62,14 +74,14 @@ def parse_drug_information(soup, extra_info=None):
62
  sections = component.find_all("section")
63
  for section in sections:
64
  title_tag = section.find("title")
65
- title_text = normalize_text(title_tag.get_text(strip=True)) if title_tag else None
66
- if not title_text:
 
67
  continue # Skip if title is not found
68
 
69
  paragraphs = section.find_all("paragraph")
70
  paragraphs_text = []
71
  seen_paragraphs = set() # Set to track unique paragraphs
72
-
73
  for paragraph in paragraphs:
74
  paragraph_text = normalize_text(paragraph.get_text(strip=True))
75
  if paragraph_text and paragraph_text not in seen_paragraphs:
@@ -79,7 +91,10 @@ def parse_drug_information(soup, extra_info=None):
79
  # Only include sections with non-empty, non-duplicate paragraphs
80
  if paragraphs_text:
81
  if title_text in sections_data:
82
- sections_data[title_text].extend(paragraphs_text)
 
 
 
83
  else:
84
  sections_data[title_text] = paragraphs_text
85
 
 
7
 
8
  def normalize_text(text):
9
  """Normalize the text by lowercasing, removing extra spaces, and stripping unnecessary characters."""
10
+ text = text.lower()
11
+ text = re.sub(r'\s+', ' ', text)
 
12
  return text.strip()
13
 
14
 
15
  def format_output_string(drug_name, sections_data):
16
+ output = [f"Drug and Generic Names: {drug_name}"]
 
17
 
18
  for title, paragraphs in sections_data.items():
19
  output.append(f"{title}:")
 
24
  return "\n".join(output)
25
 
26
 
27
+ def extract_drug_and_generic_names(structured_body):
28
+ # Extract the main drug name and any generic names
29
+ drug_names = set() # Use a set to avoid duplicates
30
+
31
+ # Look for manufacturedProduct elements
32
+ manufactured_products = structured_body.find_all("manufacturedProduct")
33
+
34
+ for manufactured_product in manufactured_products:
35
+ # Extract the main drug name
36
+ name_tag = manufactured_product.find("name")
37
+ if name_tag:
38
+ drug_names.add(name_tag.get_text(strip=True))
39
+
40
+ # Extract the generic names if available
41
+ as_generic = manufactured_product.find("asEntityWithGeneric")
42
+ if as_generic:
43
+ generic_name_tag = as_generic.find("genericMedicine").find("name")
44
+ if generic_name_tag:
45
+ drug_names.add(generic_name_tag.get_text(strip=True))
46
+
47
+ return list(drug_names)
48
+
49
+
50
  def parse_drug_information(soup, extra_info=None):
51
  # Extract the setId
52
  set_id = None
53
  set_id_tag = soup.find("setId")
54
  if set_id_tag:
55
  set_id = set_id_tag.get("root", None)
 
56
  if not set_id:
57
  return None
58
 
 
59
  structured_body = soup.find("structuredBody")
 
 
60
 
61
  # Extract the drug name
62
+ drug_names = extract_drug_and_generic_names(structured_body)
63
+
64
+ if len(drug_names) == 0:
 
 
 
 
 
 
 
65
  return None
66
 
67
+ drug_name = " | ".join(drug_names)
68
+
69
  # Iterate over components and extract sections
70
  components = structured_body.find_all("component")
71
  sections_data = {}
 
74
  sections = component.find_all("section")
75
  for section in sections:
76
  title_tag = section.find("title")
77
+ if title_tag:
78
+ title_text = normalize_text(title_tag.get_text(strip=True))
79
+ else:
80
  continue # Skip if title is not found
81
 
82
  paragraphs = section.find_all("paragraph")
83
  paragraphs_text = []
84
  seen_paragraphs = set() # Set to track unique paragraphs
 
85
  for paragraph in paragraphs:
86
  paragraph_text = normalize_text(paragraph.get_text(strip=True))
87
  if paragraph_text and paragraph_text not in seen_paragraphs:
 
91
  # Only include sections with non-empty, non-duplicate paragraphs
92
  if paragraphs_text:
93
  if title_text in sections_data:
94
+ existing_paragraphs = set(sections_data[title_text])
95
+ # Add only unique paragraphs that aren't already in the title's list
96
+ unique_paragraphs = [p for p in paragraphs_text if p not in existing_paragraphs]
97
+ sections_data[title_text].extend(unique_paragraphs)
98
  else:
99
  sections_data[title_text] = paragraphs_text
100
 
medirag/index/local.py CHANGED
@@ -6,7 +6,7 @@ from llama_index.vector_stores.faiss import FaissVectorStore
6
 
7
  class DailyMedIndexer:
8
  def __init__(self,
9
- model_name="dmis-lab/biobert-base-cased-v1.2",
10
  dimension=768,
11
  persist_dir="./storage"):
12
 
 
6
 
7
  class DailyMedIndexer:
8
  def __init__(self,
9
+ model_name="nuvocare/WikiMedical_sent_biobert",
10
  dimension=768,
11
  persist_dir="./storage"):
12
 
tests/data/daily_bio_bert_indexed/default__vector_store.json CHANGED
Binary files a/tests/data/daily_bio_bert_indexed/default__vector_store.json and b/tests/data/daily_bio_bert_indexed/default__vector_store.json differ
 
tests/data/daily_bio_bert_indexed/docstore.json CHANGED
The diff for this file is too large to render. See raw diff
 
tests/data/daily_bio_bert_indexed/index_store.json CHANGED
@@ -1 +1 @@
1
- {"index_store/data": {"d62d52d7-6cfa-482f-9213-17f807073522": {"__type__": "vector_store", "__data__": "{\"index_id\": \"d62d52d7-6cfa-482f-9213-17f807073522\", \"summary\": null, \"nodes_dict\": {\"0\": \"2f8628c2-b725-43df-9650-518b49b1ea97\", \"1\": \"b30e06b9-7415-4a29-a0f5-8d2ad913f27f\", \"2\": \"8fc0f6b1-9bad-4b41-9848-6f7e3782548a\", \"3\": \"f09cc63c-a6f1-41d9-a2ca-da6264526c99\", \"4\": \"b4d687b5-88b5-40d5-b7cd-75efac3f0578\", \"5\": \"e53bf321-c93c-4cdc-acb2-ca75473cea71\", \"6\": \"75134b5e-4def-4540-a00f-a14e29643c65\", \"7\": \"e90118dd-1d06-4a5c-ac4f-f5a1a8afd5b3\", \"8\": \"7699cfbc-aad3-484d-a5f7-79892575a273\", \"9\": \"bf2e2eb8-31fd-4c5b-aee5-02576e882cfb\", \"10\": \"c78a4884-f4e9-4c73-bc57-0df7db00600d\", \"11\": \"de81b18c-e880-4006-9864-f09a3a5eef92\", \"12\": \"6f30e20a-c021-45f2-b6e6-2d4183fcced0\", \"13\": \"4a0a810d-a36a-4b40-8f64-e4cb7066b8a4\", \"14\": \"846d389d-6329-4922-956c-6e24bf4de6c4\", \"15\": \"f1fabfa6-1a97-4b57-b902-070c6294345d\", \"16\": \"1b603c07-aa02-4292-933c-40498b68f94b\", \"17\": \"9d461565-600c-4683-86f8-94d3368171e4\", \"18\": \"076663f4-35a8-4d68-81f3-6219feaec27f\", \"19\": \"047f1a1b-256b-47f4-a2f7-a2239e491073\", \"20\": \"3278807e-23a2-42cd-abf1-4458541a61ca\", \"21\": \"6f7a3c34-0781-4dac-b863-07adf8e10de8\", \"22\": \"01ba95e8-ceca-46fa-9af3-cf27a64a20bd\", \"23\": \"32a905b6-7e62-4bcf-a044-324085089a79\", \"24\": \"619058dc-fee9-4402-886f-235f669e7bd0\", \"25\": \"31ac8010-5b22-467e-9f54-cb4bed31c072\", \"26\": \"9e56872a-1cdb-41a3-bd21-a7d0f199e57f\", \"27\": \"be6f0f43-35da-4907-b6e7-f795847570b7\", \"28\": \"04bd8c3c-ef0e-4e68-91d8-4dc026574fa6\", \"29\": \"34a759f6-95e5-4b0e-b557-f909907cb203\", \"30\": \"ef16122f-4ea3-48c0-8aa1-4a298a09ca2c\", \"31\": \"395ed926-a51d-4145-acaa-caebafdcc5cb\", \"32\": \"1884baf9-8749-4255-b5d4-7102dce3120f\", \"33\": \"ad4ec267-b440-407f-bd9d-4aff85fb30b4\", \"34\": \"5aee1612-de39-4d07-bfb8-2a3c2f4cc3f1\", \"35\": \"986c393c-46d3-47be-ab68-b5486a9ad84b\", \"36\": \"bab72927-561f-40b2-8921-1685923080bb\", \"37\": \"b0f3e46c-149d-44e7-8994-19d8c4d7c5fb\", \"38\": \"4f3a8da3-cb6c-49a0-9b8e-ef612863d203\", \"39\": \"8fc1bcc8-391f-4373-b4d3-473b8e8205cd\", \"40\": \"f8c907db-f311-4d92-a31c-63aedbcc0bce\", \"41\": \"605fd6ae-5973-414d-bd28-ff054cbcb348\", \"42\": \"01ea925f-3b04-447f-93e0-c0ee56b5ea41\", \"43\": \"231a8a8e-9807-49b7-9aad-1b0cf6e0a60b\", \"44\": \"21de36d7-a538-447c-99d0-aaaf9d1276e2\", \"45\": \"03488aa8-1846-4a3e-8623-82a34ffc1759\", \"46\": \"c6cd32fc-95d2-49e1-8087-a556f3912d02\", \"47\": \"c37f68c0-c9d1-4618-af60-7db0402818e0\", \"48\": \"002f6f72-cb81-4d43-b1a5-7334b4e0a3b2\", \"49\": \"626200ce-79a7-471e-8080-d08cb6004b8a\", \"50\": \"a4a4ef05-3371-486c-8868-5b661a5d41b0\", \"51\": \"487111b6-0e09-4114-8117-20238fa0e2c8\", \"52\": \"c8f5a33b-3073-43ef-8c5b-cf43c1c40095\", \"53\": \"e8a9016e-87ff-4f49-ab01-295823d39723\", \"54\": \"64d621a4-2743-4629-92aa-1b977aa3ca41\", \"55\": \"b7a2f47f-312d-4ebe-b93b-ed44e2464131\", \"56\": \"e5433772-2a18-4412-9621-212bc6321cf5\", \"57\": \"3a802601-f3fd-48f1-9303-0c457d54dfdf\", \"58\": \"0af02d91-b0e9-4eaf-8eaa-fe973d7288ed\", \"59\": \"1a3ba147-9bed-43bd-8e48-fe50dd9de3c3\", \"60\": \"e4898cc8-3755-4d30-8a4c-fc732f688b41\", \"61\": \"b9486676-3728-43de-8e25-4f5f471482b8\", \"62\": \"779c7e41-d155-40ff-b24c-bda8f026cd8b\", \"63\": \"e1856475-7385-40a2-a4db-4c0d44405430\", \"64\": \"1ef71a06-1624-48a6-b85a-106002abe8e3\", \"65\": \"d792d6c4-4b49-4509-88bb-96e507cdf0f6\", \"66\": \"f8376c97-b87f-456b-a781-ae64a7213a0a\", \"67\": \"4e7aff44-0ef7-4a50-9cf7-248be010cf18\", \"68\": \"ccda30df-1864-4dc1-a0a3-dac8e9793d6a\", \"69\": \"c1d727aa-b05c-4507-ab07-daed0951a7a3\", \"70\": \"b0bfae1b-4247-4dd0-9adc-19d9d7a0008d\", \"71\": \"198634d5-a3a2-4048-8324-ef9ddadac802\", \"72\": \"241382c7-c1ee-41e7-9eb8-52f2d4381db4\", \"73\": \"8f33218b-b0a6-4e72-9dcc-9c8e58ac10c2\", \"74\": \"f6cd786a-6875-49e1-8715-5d315941526c\", \"75\": \"3d06ca8e-5a3e-4b61-ada3-e07e4963f361\", \"76\": \"80e17797-2d1c-4e41-a046-8a9f7c443ee3\", \"77\": \"85a01493-6a69-464e-aa2d-b2d944b536fb\", \"78\": \"502d4111-d62e-46bf-aeb8-6e9c3bffdf4d\", \"79\": \"7bad5348-2e8b-4877-a73f-0b97fa237267\", \"80\": \"6e6f9fc6-737e-43dd-ac29-822f466df2e2\", \"81\": \"d28454b6-7bb0-41cf-bca5-7e89f29b1146\", \"82\": \"5d9d4431-737f-4e08-a041-021dd05fdf23\", \"83\": \"e387651c-882f-405f-8b67-5ac483feeddc\", \"84\": \"43dd6e9e-4e59-49a9-bf33-492e50be2c35\", \"85\": \"db31cfe5-a36d-41ec-9237-9b992d196e5c\", \"86\": \"bc0dce03-3747-4a12-a2f2-c8e7e100b047\", \"87\": \"781eb426-0626-4efe-8f96-b751ca661998\", \"88\": \"43ad57c1-b7b1-4fc8-9c65-d38aedd85648\", \"89\": \"e9cb3d4d-a4c4-4799-b3dc-b07d6302163a\", \"90\": \"ba8d05c9-ca8e-4d91-a564-c8c41114c9e0\", \"91\": \"b25dfb58-7df4-45cd-b257-94aa18799067\", \"92\": \"901d9988-5ce6-4415-a151-4f188d6f19d7\", \"93\": \"6be7709b-d1f3-4fc0-b917-bf58cb1580a2\", \"94\": \"1aa03969-fbaf-4288-bee1-104b5221fd82\", \"95\": \"73749dde-6f8c-482e-909e-83e7d8ff0840\", \"96\": \"cd2cc95b-a570-404c-bf31-0aab023bf806\", \"97\": \"3409670f-54f0-4141-9e8b-07e36c1cd955\", \"98\": \"b31116e6-b34a-41f7-aadb-d41a32c62b66\", \"99\": \"75b8fbb8-8d1d-41df-a8b1-1e5b5d698a97\", \"100\": \"92ee522f-d370-4b5e-ba58-07bca056a901\", \"101\": \"7e036939-76b9-4bb2-87dd-d9b689d5d26f\", \"102\": \"8ae34c33-2c29-4529-979c-bd1007fa8504\", \"103\": \"7a44b537-01ad-4847-93ae-fe9db9da2471\", \"104\": \"1479922d-b952-408e-a98f-3e2cc996a052\", \"105\": \"0a5a64ed-e92a-4180-9c18-eb0efdff6fa6\", \"106\": \"4cb43227-f400-4378-845e-386108f9de31\", \"107\": \"a0bbb4c1-badb-4c55-808a-17b61bafcff7\", \"108\": \"d720d30c-4f52-4fd3-ade3-c64a1e76cd06\", \"109\": \"eb2e4ea3-2f79-4272-aced-48556afec86e\", \"110\": \"fa3b8384-6347-4978-87a8-1bdd23417375\", \"111\": \"2a4fed89-eb91-4bdd-8b1e-1a617b5a4e3f\", \"112\": \"4871df5a-112e-4f49-b0e3-2626276299a0\", \"113\": \"6a24f2e2-d005-48cc-9e0b-3d23a0a072d8\", \"114\": \"b89c2bdc-6831-4b14-8801-17afbe8496ab\", \"115\": \"48b63c32-89e8-4fd1-8400-51aa1874e3e7\", \"116\": \"fb0f0fa4-ead4-4c16-a157-0c0a452ac1a8\", \"117\": \"3a287995-f7cb-4f9c-80fb-5f0cd9942dff\", \"118\": \"55ffe13d-9c44-48a3-a505-fa4872875270\", \"119\": \"d80cf990-431b-49d4-a0d1-63f668654b0e\", \"120\": \"59db1663-98fe-47f1-9aed-654868eddc98\", \"121\": \"fc4ac23c-b0c1-4385-b4fd-915879026f83\", \"122\": \"d43170c2-eab1-44cd-9d4d-378fbdb60c0c\", \"123\": \"ec898f3c-260b-4d1b-99fc-004b80154ff7\", \"124\": \"2226360c-46d9-46d3-b978-3b7d59584fb0\", \"125\": \"b4741aed-e2f8-4a63-8a88-b0865e8cbfdc\", \"126\": \"6bd02a9c-32b3-4645-9f69-de0cccdc3fb4\", \"127\": \"3ba01e3e-4420-408e-866a-8bc132d42074\", \"128\": \"482dfaff-f40f-45f8-ba2a-277dc8528579\", \"129\": \"ed80b68b-33d3-4532-ad8c-2938113e326d\"}, \"doc_id_dict\": {}, \"embeddings_dict\": {}}"}}}
 
1
+ {"index_store/data": {"094f4c0c-af8f-41d3-ae01-97383ed77ef4": {"__type__": "vector_store", "__data__": "{\"index_id\": \"094f4c0c-af8f-41d3-ae01-97383ed77ef4\", \"summary\": null, \"nodes_dict\": {\"0\": \"8ffb2edf-e849-4a7c-81b3-931ce1bf7161\", \"1\": \"52d7a57a-af68-48b3-8072-fd0894a44b11\", \"2\": \"61f61d11-9bab-4dc7-8965-9477f0fb2d57\", \"3\": \"dddc5c49-31f8-4a95-8282-1d590f88d378\", \"4\": \"df24fad1-9589-456e-a3f3-a746900a3acf\", \"5\": \"0d05f4df-6821-4721-aaf7-ae201ce84dd5\", \"6\": \"44e17ff4-c0a5-4452-b41f-146502ca4c5e\", \"7\": \"3d09a622-bdf5-42e3-b21d-dfa0eeb640d3\", \"8\": \"0da142cf-2955-459c-8048-68d1309c0a01\", \"9\": \"1fb064bc-8192-4054-a771-e04341351011\", \"10\": \"4c4a88b1-b177-4ee0-8eb1-b64ab4c4e61a\", \"11\": \"d4c5164c-2c34-40df-86a5-1d6d0c5014da\", \"12\": \"9d81c8c9-ffe7-43d7-bda3-a0175e8906c6\", \"13\": \"adf3dabc-710b-49ed-b10d-8568ed4c355a\", \"14\": \"2f061ed3-eac6-43dd-b466-b672dba5804f\", \"15\": \"c6bed9da-6c8e-4ae1-88d7-56e43fd9562d\", \"16\": \"ceb4a59f-5e0c-42d5-a72f-926b451c22ef\", \"17\": \"0745aeb0-c9c6-4dd5-8d18-8244687da1d3\", \"18\": \"351d3fde-c6bf-4842-9f6c-c0422a4cd689\", \"19\": \"e8b262d6-3ca2-4604-bde2-ec7b0d8711f0\", \"20\": \"4d50e2a6-254b-4cdd-abd1-6616a25f9f54\", \"21\": \"d1fb364e-7700-4105-98a0-5c01dbc8e641\", \"22\": \"196695c3-413c-4149-904d-f0b95dfd7b93\", \"23\": \"fb6f5450-8053-4e0a-ab63-242efb899602\", \"24\": \"cbd6dfc4-dd9a-4e1e-9365-082b3a5fb671\", \"25\": \"87463055-de4e-4855-949c-5603fdcee55b\", \"26\": \"d70e3a02-a4d8-4953-9538-6cf255e28cfd\", \"27\": \"ae9c59cd-358f-4072-a04e-6c0f351c5948\", \"28\": \"a3d98744-d4cb-4e9b-b5e8-571acf05e6a4\", \"29\": \"f0b89ab6-91bf-458c-a814-fbc97a2b02d3\", \"30\": \"0068d26e-dfa4-4de8-925b-994b2b1df8b0\", \"31\": \"99b9be23-2f37-4be7-ab33-ed6b9643d04c\", \"32\": \"3172f340-3d1a-454e-b7ab-bb259bc75e55\", \"33\": \"f66d20e6-71e3-4b5e-a243-760e5c3b1d76\", \"34\": \"af4f5974-c337-40d4-b284-4208eb168901\", \"35\": \"b4e742cc-d6f1-4693-85f4-4e45034d513c\", \"36\": \"5f9acbea-d72e-4c75-bb7f-8237dcb1738e\", \"37\": \"b85d9b91-0b23-4f20-b68b-a77235bbc9ba\", \"38\": \"ec13de43-0d6f-484d-a93c-1395140a9800\", \"39\": \"b5812945-2060-4def-909a-ce16ac78f892\", \"40\": \"a6fb69a0-7efb-4106-a302-c4244ac23fed\", \"41\": \"046680cc-52d0-4f88-9397-4ce05589f84a\", \"42\": \"a9628076-db3a-47ca-82d4-c04d666ab5b9\", \"43\": \"3ada7248-12ac-4f3f-b25f-0c9913e6af87\", \"44\": \"9c5d63f5-1e75-459d-b702-520ccfb0eb52\", \"45\": \"84785bef-b538-499b-87e6-300c138f451c\", \"46\": \"6e26a161-5b38-4c26-b6be-1a05a1ba8f40\", \"47\": \"de22b10f-841f-465a-9d64-630b0e710ae3\", \"48\": \"589c9677-c43f-4360-8a49-f516bcbb98f4\", \"49\": \"c1021753-9faf-4b35-aa35-84eebbae78a4\", \"50\": \"fe25f849-3fdd-4f35-9e41-e70e33a7740d\", \"51\": \"428bea6d-9cc7-4871-8e64-49e4fdd55f12\", \"52\": \"0a204ca0-640e-4de1-85d9-b22df0ae6e02\", \"53\": \"5b31446f-fc3c-4856-a284-6918343b9f50\", \"54\": \"a390735d-01c6-43bf-8c29-15f2733fb8f0\", \"55\": \"08985457-5a61-40d1-8b23-cb413c3db5a0\", \"56\": \"57df8a99-81f8-4056-8337-a19f6b3e9ffb\", \"57\": \"593e6722-c38c-4e30-902b-9fc946c09f2e\", \"58\": \"170328dc-90aa-4bee-98e9-bf08cc3cda78\", \"59\": \"d24e7b93-876f-4382-b2a3-184a589a5bc3\", \"60\": \"4af9d6a2-4ba0-434c-b454-d54c6ea0d94e\", \"61\": \"47898460-e6b0-449e-8557-f35167b92471\", \"62\": \"6cb0919c-e2d9-4495-8667-daeae6f0c33a\", \"63\": \"caad5c1b-6a83-4b63-8520-1fba8db207c0\", \"64\": \"cabb583c-2975-43d9-9746-5810cc5550a0\", \"65\": \"cca87e22-451c-4fd3-a2b3-82f7611698ba\", \"66\": \"757d5f26-40bc-4cee-9352-ec7b1f5b36cf\", \"67\": \"080a86d2-20aa-4312-88d9-84f81a7b8d37\", \"68\": \"adbd65dd-e126-4644-a048-7ae5c345cb3b\", \"69\": \"d8624bbf-7568-4958-b6cb-aace63327ab3\", \"70\": \"73484ba1-897c-4da3-8e11-6ad871edfeb5\", \"71\": \"c7763a74-c056-4eb9-8de3-38760ebbbcdc\", \"72\": \"d9781c9a-ef9d-4025-808a-48bc80904c7e\", \"73\": \"cf8051ac-a9d3-4b06-ae0a-b7e91db30bb3\", \"74\": \"6183ba0b-0f73-4ff7-af86-a41508919163\", \"75\": \"bcc6bd07-27ca-42a2-baaa-743be396b388\", \"76\": \"db7f2c11-6484-4560-9447-fbdba6bfc8b3\", \"77\": \"15aeceea-5583-4bd4-bf72-1f99d44dccf0\", \"78\": \"c19b7a7d-670a-433b-b3f1-db3844f8c31c\", \"79\": \"7b160bff-7c59-425c-8c5f-5a274002c80d\", \"80\": \"54f1bcd8-5d92-42fe-845d-7e1b29efc592\", \"81\": \"89c75206-319a-46b9-a72d-4863ebfa7d12\", \"82\": \"1f8b0334-cd9d-4425-9464-ce54fda3d572\", \"83\": \"f5cd70d7-32bd-4bef-a33c-916215627249\", \"84\": \"f8c93504-1ea1-420a-9e93-d82b144041c0\", \"85\": \"a28ba8b2-68dc-4e32-81f1-b6621f77c8a5\", \"86\": \"096f0a61-8c14-4ac2-ae0b-9d9b2aea2f5b\", \"87\": \"f1c6899c-5cc4-4bb6-a2ae-cded11d47357\", \"88\": \"bffd3cc5-b443-4c42-997f-854405298e51\", \"89\": \"03cecd87-4c0d-4182-9587-68031e63f2e5\", \"90\": \"28ea880f-0927-46be-9058-e33b10ef8894\", \"91\": \"e93c2059-d81c-403a-a0ce-d6ba3c1a6068\", \"92\": \"508f9468-f651-430a-87ee-bfd52e9426ff\", \"93\": \"5e17bb81-42a8-48c6-bbdb-b1c0555492c2\", \"94\": \"5238baab-3188-4685-9de5-91a038cf8e7f\", \"95\": \"f4910bc5-32b7-42b8-a49c-fa8871d7db60\", \"96\": \"f0e78d36-7291-4d66-8eb8-37dde194115f\", \"97\": \"a8cb9e2a-f555-416e-b453-a4ddf4ae5284\", \"98\": \"908038fa-5722-4c3c-9682-8ca30e5318aa\", \"99\": \"9785723b-794d-409e-9ced-df231094a7e8\", \"100\": \"e9eff912-b835-4fb4-80ca-b2575280c9c5\", \"101\": \"713709b2-93e2-4be7-9bf1-da4b064a9502\", \"102\": \"e866a0fa-18de-4995-ae5e-46fb08a68554\", \"103\": \"76d78cec-d6ab-4b01-b61c-4cf0c5b69b55\", \"104\": \"afb6cb30-4fc9-4902-a984-72cdca46614e\", \"105\": \"cad12ba2-304f-4de8-9a96-86ae0b7c96b5\", \"106\": \"47c42be1-1e10-489b-a9fa-540854c5beee\", \"107\": \"6fbbdd66-bd10-4fa9-80ee-b555f8064baf\", \"108\": \"9743a4de-e5fd-4620-988b-c5ad9b923619\", \"109\": \"8c58450c-9118-4f68-8f85-ee6d79b9c54d\", \"110\": \"b09bc864-e9a9-4d58-a72d-8392c28fcf02\", \"111\": \"c8fe7b54-bb5a-485c-8318-3c32bb320028\", \"112\": \"c082e938-8dc7-4613-b5ca-0db01c4e5605\", \"113\": \"dfbfc8b2-0a89-4074-af25-6b7a43854ac0\", \"114\": \"ef29d314-87f9-439e-b288-91a5823f9703\", \"115\": \"172a795b-648e-4918-84a6-9103f49401f2\", \"116\": \"26c30ed8-918e-4d1f-ac82-07cdebb9a96c\", \"117\": \"fa272094-6d24-4e10-97cc-b60aec0f3a02\", \"118\": \"34e56f49-415e-4ff4-8660-f3da4606241f\", \"119\": \"5af58b35-d439-46be-96e2-a5ff5d41f890\", \"120\": \"3f914cff-3c98-4c23-ac16-54f6dcf8c51d\", \"121\": \"88346af2-b503-4707-ab2f-5de0ec8796e5\", \"122\": \"2f7e4648-de88-4fc2-9953-50903dac145d\", \"123\": \"93b8369d-8777-4b69-a871-667448448fb6\", \"124\": \"d8850c13-8b86-42ca-93c0-2c978ecfcdff\", \"125\": \"d8288ea4-1320-41b6-a200-2f53a6b3fd7f\", \"126\": \"4f147167-2c3f-4fa6-8de2-73c93ae70008\", \"127\": \"2890a0d4-8405-448e-8894-419a6770aeac\", \"128\": \"ca4934eb-29b7-42d2-8b34-6133f0c890df\"}, \"doc_id_dict\": {}, \"embeddings_dict\": {}}"}}}