Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,3 @@
|
|
1 |
-
import json
|
2 |
-
import random
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
-
import numpy as np
|
6 |
-
import spaces
|
7 |
-
import torch
|
8 |
-
from diffusers import DiffusionPipeline, LCMScheduler
|
9 |
-
|
10 |
with open("sdxl_lora.json", "r") as file:
|
11 |
data = json.load(file)
|
12 |
sdxl_loras_raw = [
|
@@ -38,17 +29,50 @@ pipe.to(device=DEVICE, dtype=torch.float16)
|
|
38 |
MAX_SEED = np.iinfo(np.int32).max
|
39 |
MAX_IMAGE_SIZE = 1024
|
40 |
|
41 |
-
|
42 |
-
def update_selection(
|
43 |
-
selected_state: gr.SelectData,
|
44 |
-
gr_sdxl_loras,
|
45 |
-
):
|
46 |
-
|
47 |
lora_id = gr_sdxl_loras[selected_state.index]["repo"]
|
48 |
trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"]
|
49 |
-
|
50 |
return lora_id, trigger_word
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
@spaces.GPU
|
54 |
def infer(
|
@@ -63,19 +87,7 @@ def infer(
|
|
63 |
user_lora_weight,
|
64 |
progress=gr.Progress(track_tqdm=True),
|
65 |
):
|
66 |
-
|
67 |
-
|
68 |
-
new_adapter_id = user_lora_selector.replace("/", "_")
|
69 |
-
loaded_adapters = pipe.get_list_adapters()
|
70 |
-
|
71 |
-
if new_adapter_id not in loaded_adapters["unet"]:
|
72 |
-
gr.Info("Swapping LoRA")
|
73 |
-
pipe.unload_lora_weights()
|
74 |
-
pipe.load_lora_weights(flash_sdxl_id, adapter_name="lora")
|
75 |
-
pipe.load_lora_weights(user_lora_selector, adapter_name=new_adapter_id)
|
76 |
-
|
77 |
-
pipe.set_adapters(["lora", new_adapter_id], adapter_weights=[1.0, user_lora_weight])
|
78 |
-
gr.Info("LoRA setup done")
|
79 |
|
80 |
if randomize_seed:
|
81 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
with open("sdxl_lora.json", "r") as file:
|
2 |
data = json.load(file)
|
3 |
sdxl_loras_raw = [
|
|
|
29 |
MAX_SEED = np.iinfo(np.int32).max
|
30 |
MAX_IMAGE_SIZE = 1024
|
31 |
|
32 |
+
def update_selection(selected_state: gr.SelectData, gr_sdxl_loras):
|
|
|
|
|
|
|
|
|
|
|
33 |
lora_id = gr_sdxl_loras[selected_state.index]["repo"]
|
34 |
trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"]
|
|
|
35 |
return lora_id, trigger_word
|
36 |
|
37 |
+
def load_lora_for_style(style_repo):
|
38 |
+
pipe.unload_lora_weights()
|
39 |
+
pipe.load_lora_weights(style_repo, adapter_name="lora")
|
40 |
+
|
41 |
+
def get_image(image_data):
|
42 |
+
if isinstance(image_data, str):
|
43 |
+
return image_data
|
44 |
+
|
45 |
+
if isinstance(image_data, dict):
|
46 |
+
local_path = image_data.get('local_path')
|
47 |
+
hf_url = image_data.get('hf_url')
|
48 |
+
else:
|
49 |
+
print(f"Unexpected image_data format: {type(image_data)}")
|
50 |
+
return None
|
51 |
+
|
52 |
+
# Try loading from local path first
|
53 |
+
if local_path and os.path.exists(local_path):
|
54 |
+
try:
|
55 |
+
Image.open(local_path).verify() # Verify that it's a valid image
|
56 |
+
return local_path
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error loading local image {local_path}: {e}")
|
59 |
+
|
60 |
+
# If local path fails or doesn't exist, try URL
|
61 |
+
if hf_url:
|
62 |
+
try:
|
63 |
+
response = requests.get(hf_url)
|
64 |
+
if response.status_code == 200:
|
65 |
+
img = Image.open(requests.get(hf_url, stream=True).raw)
|
66 |
+
img.verify() # Verify that it's a valid image
|
67 |
+
img.save(local_path) # Save for future use
|
68 |
+
return local_path
|
69 |
+
else:
|
70 |
+
print(f"Failed to fetch image from URL {hf_url}. Status code: {response.status_code}")
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error loading image from URL {hf_url}: {e}")
|
73 |
+
|
74 |
+
print(f"Failed to load image for {image_data}")
|
75 |
+
return None
|
76 |
|
77 |
@spaces.GPU
|
78 |
def infer(
|
|
|
87 |
user_lora_weight,
|
88 |
progress=gr.Progress(track_tqdm=True),
|
89 |
):
|
90 |
+
load_lora_for_style(user_lora_selector)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
if randomize_seed:
|
93 |
seed = random.randint(0, MAX_SEED)
|