Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,26 @@
|
|
1 |
import json
|
2 |
import random
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import spaces
|
7 |
import torch
|
8 |
from diffusers import DiffusionPipeline, LCMScheduler
|
|
|
|
|
9 |
|
|
|
10 |
with open("sdxl_lora.json", "r") as file:
|
11 |
data = json.load(file)
|
12 |
-
sdxl_loras_raw = [
|
13 |
-
{
|
14 |
-
"image": item["image"],
|
15 |
-
"title": item["title"],
|
16 |
-
"repo": item["repo"],
|
17 |
-
"trigger_word": item["trigger_word"],
|
18 |
-
"weights": item["weights"],
|
19 |
-
"is_pivotal": item.get("is_pivotal", False),
|
20 |
-
"text_embedding_weights": item.get("text_embedding_weights", None),
|
21 |
-
"likes": item.get("likes", 0),
|
22 |
-
}
|
23 |
-
for item in data
|
24 |
-
]
|
25 |
-
|
26 |
-
# Sort the loras by likes
|
27 |
-
sdxl_loras_raw = sorted(sdxl_loras_raw, key=lambda x: x["likes"], reverse=True)
|
28 |
|
29 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
31 |
|
32 |
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
|
33 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
34 |
-
pipe.load_lora_weights("jasperai/flash-sdxl", adapter_name="lora")
|
35 |
pipe.to(device=DEVICE, dtype=torch.float16)
|
36 |
|
37 |
-
|
38 |
MAX_SEED = np.iinfo(np.int32).max
|
39 |
MAX_IMAGE_SIZE = 1024
|
40 |
|
|
|
1 |
import json
|
2 |
import random
|
3 |
+
import requests
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import spaces
|
7 |
import torch
|
8 |
from diffusers import DiffusionPipeline, LCMScheduler
|
9 |
+
from PIL import Image
|
10 |
+
import os
|
11 |
|
12 |
+
# Load the JSON data
|
13 |
with open("sdxl_lora.json", "r") as file:
|
14 |
data = json.load(file)
|
15 |
+
sdxl_loras_raw = sorted(data, key=lambda x: x["likes"], reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
19 |
|
20 |
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
|
21 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
|
|
22 |
pipe.to(device=DEVICE, dtype=torch.float16)
|
23 |
|
|
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
MAX_IMAGE_SIZE = 1024
|
26 |
|