Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import requests | |
import io | |
from PIL import Image | |
import json | |
import os | |
# Load LoRAs from JSON | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
# API call function | |
def query(payload, api_url, token): | |
headers = {"Authorization": f"Bearer {token}"} | |
response = requests.post(api_url, headers=headers, json=payload) | |
return io.BytesIO(response.content) | |
# Define the function to run when the button is clicked | |
def run_lora(prompt, weight): | |
print("Inside run_lora") | |
selected_lora = loras[0] # You may need to adjust this index if you have multiple models | |
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}" | |
trigger_word = selected_lora["trigger_word"] | |
token = os.getenv("API_TOKEN") # This will read the API token set in your managed environment | |
payload = {"inputs": f"{prompt} {trigger_word}"} | |
print("Calling query function...") | |
image_bytes = query(payload, api_url, token) | |
print("Query function executed successfully.") | |
return Image.open(image_bytes) | |
# Gradio UI | |
print("Before Gradio Interface") | |
# Create a Gradio Blocks interface | |
with gr.Blocks() as app: | |
title = gr.HTML("<h1>LoRA the Explorer</h1>") | |
gallery = gr.Gallery( | |
[(item["image"], item["title"]) for item in loras], | |
label="LoRA Gallery", | |
allow_preview=False, | |
columns=3, | |
) | |
prompt = gr.Textbox(label="Prompt", lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA") | |
advanced_options = gr.Accordion("Advanced options", open=False) | |
weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight") | |
result = gr.Image(interactive=False, label="Generated Image") | |
# Link the function to run when the button is clicked | |
gr.Row([ | |
gr.Column([ | |
title, | |
gallery, | |
prompt, | |
advanced_options, | |
weight, | |
gr.Button("Run", label="Run").click( | |
fn=run_lora, | |
inputs=[prompt, weight], | |
outputs=[result] | |
) | |
]), | |
gr.Column([result]) | |
]) | |
print("After Gradio Interface") | |
# Launch the Gradio interface with a queue | |
app.launch(debug=True, queue=True) |