FROMAGe / app.py
alvanlii's picture
Fix model path
6405b6b
raw
history blame
5.25 kB
import os, time, copy
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
from PIL import Image
import gradio as gr
import numpy as np
import torch
from transformers import logging
logging.set_verbosity_error()
from fromage import models
from fromage import utils
BASE_WIDTH = 512
MODEL_DIR = './fromage_model/fromage_vis4'
class ChatBotCheese:
def __init__(self):
from huggingface_hub import hf_hub_download
model_ckpt_path = hf_hub_download("alvanlii/fromage", "pretrained_ckpt.pth.tar")
self.model = models.load_fromage(MODEL_DIR, model_ckpt_path)
self.curr_image = None
def add_image(self, state, image_in):
state = state + [(f'<img src="/file={image_in.name}">', "Ok, now type your message")]
self.curr_image = Image.open(image_in.name).convert('RGB')
return state, state
def save_im(self, image_pil):
file_name = f"{int(time.time())}_{np.random.randint(100)}.png"
image_pil.save(file_name)
return file_name
def chat(self, input_text, state, ret_scale_factor, num_ims, num_words, temp, chat_state):
chat_state.append(f'Q: {input_text} \nA:')
chat_history = "".join(chat_state)
model_input = []
# print(chat_history)
if self.curr_image is not None:
model_input = [self.curr_image, chat_history]
else:
model_input = [chat_history]
model_outputs = self.model.generate_for_images_and_texts(model_input, max_num_rets=num_ims, num_words=num_words, ret_scale_factor=ret_scale_factor, temperature=temp)
chat_state.append(' '.join([s for s in model_outputs if type(s) == str]) + '\n')
im_names = []
if len(model_outputs) > 1:
im_names = [self.save_im(im) for im in model_outputs[1]]
response = model_outputs[0]
for im_name in im_names:
response += f'<img src="/file={im_name}">'
state.append((input_text, response.replace("[RET]", "")))
self.curr_image = None
return state, state, chat_state
def reset(self):
self.curr_image = None
return [], [], []
def main(self):
with gr.Blocks(css="#chatbot {height:600px; overflow-y:auto;}") as demo:
gr.Markdown(
"""
### FROMAGe: Grounding Language Models to Images for Multimodal Generation
Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried <br/>
[Paper](https://arxiv.org/abs/2301.13823) [Github](https://github.com/kohjingyu/fromage) [Official Demo](https://huggingface.co/spaces/jykoh/fromage) <br/>
This is an unofficial Gradio demo for the paper FROMAGe <br/>
- Instructions (in order):
- [Optional] Upload an image (the button with a photo emoji)
- [Optional] Change the parameters
- Send a message by typing into the box and pressing Enter on your keyboard
- Ask about the image! Tell it to find similar images, or ones with different styles.
- Check out the examples at the bottom!
##### Notes
- Please be kind to it!
- It retrieves images from a database, and does not edit images
- If it returns nothing, try resetting and refreshing the page
"""
)
chatbot = gr.Chatbot(elem_id="chatbot")
gr_state = gr.State([])
gr_chat_state = gr.State([])
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(show_label=False, placeholder="Upload an image first [Optional]. Then enter text and press enter,").style(container=False)
with gr.Column(scale=0.15, min_width=0):
btn = gr.UploadButton("🖼️", file_types=["image"])
with gr.Row():
with gr.Column(scale=0.20, min_width=0):
reset_btn = gr.Button("Reset Messages")
gr_ret_scale_factor = gr.Number(value=1.0, label="Increased prob of returning images", interactive=True)
gr_num_ims = gr.Number(value=3, precision=1, label="Max # of Images returned", interactive=True)
gr_num_words = gr.Number(value=32, precision=1, label="Max # of words returned", interactive=True)
gr_temp = gr.Number(value=0.0, label="Temperature", interactive=True)
with gr.Row():
gr.Image("example_1.png", label="Example 1")
gr.Image("example_2.png", label="Example 2")
gr.Image("example_3.png", label="Example 3")
txt.submit(self.chat, [txt, gr_state, gr_ret_scale_factor, gr_num_ims, gr_num_words, gr_temp, gr_chat_state], [gr_state, chatbot, gr_chat_state])
txt.submit(lambda :"", None, txt)
btn.upload(self.add_image, [gr_state, btn], [gr_state, chatbot])
reset_btn.click(self.reset, [], [gr_state, chatbot, gr_chat_state])
demo.launch(share=False, server_name="0.0.0.0")
def main():
cheddar = ChatBotCheese()
cheddar.main()
if __name__ == "__main__":
main()