SEE / app.py
AlshimaaGamalAlsaied
update
33c3d7d
raw
history blame
8.18 kB
import gradio as gr
#import torch
import yolov7
import subprocess
import tempfile
import time
from pathlib import Path
import cv2
import gradio as gr
# Images
#torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
#torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
def image_fn(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv7 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
model.conf = conf_threshold
model.iou = iou_threshold
results = model([image], size=image_size)
return results.render()[0]
def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
suffix = Path(video_file).suffix
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
subprocess.call(
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
)
# Reader of clip file
cap = cv2.VideoCapture(clip_temp_file.name)
# This is an intermediary temp file where we'll write the video to
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
# with ffmpeg at the end of the function here.
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
num_frames = 0
max_frames = duration * 30
while cap.isOpened():
try:
ret, frame = cap.read()
if not ret:
break
except Exception as e:
print(e)
continue
print("FRAME DTYPE", type(frame))
out.write(model(frame, conf_thres, iou_thres))
num_frames += 1
print("Processed {} frames".format(num_frames))
if num_frames == max_frames:
break
out.release()
# Aforementioned hackiness
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
return out_file.name
image_interface = gr.Interface(
fn=image_fn,
inputs=[
gr.inputs.Image(type="pil", label="Input Image"),
gr.inputs.Dropdown(
choices=[
"alshimaa/model_baseline",
"alshimaa/model_yolo7",
#"kadirnar/yolov7-v0.1",
],
default="alshimaa/model_baseline",
label="Model",
)
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
],
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
title="Smart Environmental Eye (SEE)",
examples=[['image1.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45]],
cache_examples=True,
theme='huggingface',
)
video_interface = gr.Interface(
fn=video_fn,
inputs=[
gr.Video(type="file"),
gr.inputs.Dropdown(
choices=[
"alshimaa/model_baseline",
"alshimaa/model_yolo7",
#"kadirnar/yolov7-v0.1",
],
default="alshimaa/model_baseline",
label="Model",
),
],
outputs=gr.outputs.Video(type="filepath", format="mp4", label="Output Video"),
# examples=[
# ["video.mp4", 0.25, 0.45, 0, 2],
# ],
title="Smart Environmental Eye (SEE)",
cache_examples=True,
theme='huggingface',
)
if __name__ == "__main__":
gr.TabbedInterface(
[image_interface, video_interface],
["Run on Images", "Run on Videos"],
).launch()
# import subprocess
# import tempfile
# import time
# from pathlib import Path
# import cv2
# import gradio as gr
# from inferer import Inferer
# pipeline = Inferer("alshimaa/model_yolo7", device='cuda')
# def fn_image(image, conf_thres, iou_thres):
# return pipeline(image, conf_thres, iou_thres)
# def fn_video(video_file, conf_thres, iou_thres, start_sec, duration):
# start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
# end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
# suffix = Path(video_file).suffix
# clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
# subprocess.call(
# f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
# )
# # Reader of clip file
# cap = cv2.VideoCapture(clip_temp_file.name)
# # This is an intermediary temp file where we'll write the video to
# # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
# # with ffmpeg at the end of the function here.
# with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
# out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
# num_frames = 0
# max_frames = duration * 30
# while cap.isOpened():
# try:
# ret, frame = cap.read()
# if not ret:
# break
# except Exception as e:
# print(e)
# continue
# print("FRAME DTYPE", type(frame))
# out.write(pipeline(frame, conf_thres, iou_thres))
# num_frames += 1
# print("Processed {} frames".format(num_frames))
# if num_frames == max_frames:
# break
# out.release()
# # Aforementioned hackiness
# out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
# subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
# return out_file.name
# image_interface = gr.Interface(
# fn=fn_image,
# inputs=[
# "image",
# gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
# gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
# ],
# outputs=gr.Image(type="file"),
# examples=[["image1.jpg", 0.5, 0.5], ["image2.jpg", 0.25, 0.45], ["image3.jpg", 0.25, 0.45]],
# title="Smart Environmental Eye (SEE)",
# allow_flagging=False,
# allow_screenshot=False,
# )
# video_interface = gr.Interface(
# fn=fn_video,
# inputs=[
# gr.Video(type="file"),
# gr.Slider(0, 1, value=0.25, label="Confidence Threshold"),
# gr.Slider(0, 1, value=0.45, label="IOU Threshold"),
# gr.Slider(0, 10, value=0, label="Start Second", step=1),
# gr.Slider(0, 10 if pipeline.device.type != 'cpu' else 3, value=4, label="Duration", step=1),
# ],
# outputs=gr.Video(type="file", format="mp4"),
# # examples=[
# # ["video.mp4", 0.25, 0.45, 0, 2],
# # ],
# title="Smart Environmental Eye (SEE)",
# allow_flagging=False,
# allow_screenshot=False,
# )
# if __name__ == "__main__":
# gr.TabbedInterface(
# [image_interface, video_interface],
# ["Run on Images", "Run on Videos"],
# ).launch()