diffdock-alphunt-demo / evaluate.py
Alejandro Velez-Arce
Duplicate from simonduerr/diffdock
79c17e6
import copy
import os
import torch
import time
from argparse import ArgumentParser, Namespace, FileType
from datetime import datetime
from functools import partial
import numpy as np
import wandb
from biopandas.pdb import PandasPdb
from rdkit import RDLogger
from torch_geometric.loader import DataLoader
from datasets.pdbbind import PDBBind, read_mol
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.sampling import randomize_position, sampling
from utils.utils import get_model, get_symmetry_rmsd, remove_all_hs, read_strings_from_txt, ExponentialMovingAverage
from utils.visualise import PDBFile
from tqdm import tqdm
RDLogger.DisableLog('rdApp.*')
import yaml
cache_name = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f')
parser = ArgumentParser()
parser.add_argument('--config', type=FileType(mode='r'), default=None)
parser.add_argument('--model_dir', type=str, default='workdir', help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--ckpt', type=str, default='best_model.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--confidence_model_dir', type=str, default=None, help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--confidence_ckpt', type=str, default='best_model.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--affinity_model_dir', type=str, default=None, help='Path to folder with trained affinity model and hyperparameters')
parser.add_argument('--affinity_ckpt', type=str, default='best_model.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--num_cpu', type=int, default=None, help='if this is a number instead of none, the max number of cpus used by torch will be set to this.')
parser.add_argument('--run_name', type=str, default='test', help='')
parser.add_argument('--project', type=str, default='ligbind_inf', help='')
parser.add_argument('--out_dir', type=str, default=None, help='Where to save results to')
parser.add_argument('--batch_size', type=int, default=10, help='Number of poses to sample in parallel')
parser.add_argument('--cache_path', type=str, default='data/cacheNew', help='Folder from where to load/restore cached dataset')
parser.add_argument('--data_dir', type=str, default='data/PDBBind_processed/', help='Folder containing original structures')
parser.add_argument('--split_path', type=str, default='data/splits/timesplit_no_lig_overlap_val', help='Path of file defining the split')
parser.add_argument('--no_model', action='store_true', default=False, help='Whether to return seed conformer without running model')
parser.add_argument('--no_random', action='store_true', default=False, help='Whether to add randomness in diffusion steps')
parser.add_argument('--no_final_step_noise', action='store_true', default=False, help='Whether to add noise after the final step')
parser.add_argument('--ode', action='store_true', default=False, help='Whether to run the probability flow ODE')
parser.add_argument('--wandb', action='store_true', default=False, help='')
parser.add_argument('--inference_steps', type=int, default=20, help='Number of denoising steps')
parser.add_argument('--limit_complexes', type=int, default=0, help='Limit to the number of complexes')
parser.add_argument('--num_workers', type=int, default=1, help='Number of workers for dataset creation')
parser.add_argument('--tqdm', action='store_true', default=False, help='Whether to show progress bar')
parser.add_argument('--save_visualisation', action='store_true', default=False, help='Whether to save visualizations')
parser.add_argument('--samples_per_complex', type=int, default=1, help='Number of poses to sample for each complex')
parser.add_argument('--actual_steps', type=int, default=None, help='')
args = parser.parse_args()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
if args.out_dir is None: args.out_dir = f'inference_out_dir_not_specified/{args.run_name}'
os.makedirs(args.out_dir, exist_ok=True)
with open(f'{args.model_dir}/model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
if args.confidence_model_dir is not None:
with open(f'{args.confidence_model_dir}/model_parameters.yml') as f:
confidence_args = Namespace(**yaml.full_load(f))
if not os.path.exists(confidence_args.original_model_dir):
print("Path does not exist: ", confidence_args.original_model_dir)
confidence_args.original_model_dir = os.path.join(*confidence_args.original_model_dir.split('/')[-2:])
print('instead trying path: ', confidence_args.original_model_dir)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
test_dataset = PDBBind(transform=None, root=args.data_dir, limit_complexes=args.limit_complexes,
receptor_radius=score_model_args.receptor_radius,
cache_path=args.cache_path, split_path=args.split_path,
remove_hs=score_model_args.remove_hs, max_lig_size=None,
c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors,
matching=not score_model_args.no_torsion, keep_original=True,
popsize=score_model_args.matching_popsize,
maxiter=score_model_args.matching_maxiter,
all_atoms=score_model_args.all_atoms,
atom_radius=score_model_args.atom_radius,
atom_max_neighbors=score_model_args.atom_max_neighbors,
esm_embeddings_path=score_model_args.esm_embeddings_path,
require_ligand=True,
num_workers=args.num_workers)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
if args.confidence_model_dir is not None:
if not (confidence_args.use_original_model_cache or confidence_args.transfer_weights):
# if the confidence model uses the same type of data as the original model then we do not need this dataset and can just use the complexes
print('HAPPENING | confidence model uses different type of graphs than the score model. Loading (or creating if not existing) the data for the confidence model now.')
confidence_test_dataset = PDBBind(transform=None, root=args.data_dir, limit_complexes=args.limit_complexes,
receptor_radius=confidence_args.receptor_radius,
cache_path=args.cache_path, split_path=args.split_path,
remove_hs=confidence_args.remove_hs, max_lig_size=None, c_alpha_max_neighbors=confidence_args.c_alpha_max_neighbors,
matching=not confidence_args.no_torsion, keep_original=True,
popsize=confidence_args.matching_popsize,
maxiter=confidence_args.matching_maxiter,
all_atoms=confidence_args.all_atoms,
atom_radius=confidence_args.atom_radius,
atom_max_neighbors=confidence_args.atom_max_neighbors,
esm_embeddings_path= confidence_args.esm_embeddings_path, require_ligand=True,
num_workers=args.num_workers)
confidence_complex_dict = {d.name: d for d in confidence_test_dataset}
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
if not args.no_model:
model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True)
state_dict = torch.load(f'{args.model_dir}/{args.ckpt}', map_location=torch.device('cpu'))
if args.ckpt == 'last_model.pt':
model_state_dict = state_dict['model']
ema_weights_state = state_dict['ema_weights']
model.load_state_dict(model_state_dict, strict=True)
ema_weights = ExponentialMovingAverage(model.parameters(), decay=score_model_args.ema_rate)
ema_weights.load_state_dict(ema_weights_state, device=device)
ema_weights.copy_to(model.parameters())
else:
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
if args.confidence_model_dir is not None:
if confidence_args.transfer_weights:
with open(f'{confidence_args.original_model_dir}/model_parameters.yml') as f:
confidence_model_args = Namespace(**yaml.full_load(f))
else:
confidence_model_args = confidence_args
confidence_model = get_model(confidence_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True,
confidence_mode=True)
state_dict = torch.load(f'{args.confidence_model_dir}/{args.confidence_ckpt}', map_location=torch.device('cpu'))
confidence_model.load_state_dict(state_dict, strict=True)
confidence_model = confidence_model.to(device)
confidence_model.eval()
else:
confidence_model = None
confidence_args = None
confidence_model_args = None
if args.wandb:
run = wandb.init(
entity='entity',
settings=wandb.Settings(start_method="fork"),
project=args.project,
name=args.run_name,
config=args
)
tr_schedule = get_t_schedule(inference_steps=args.inference_steps)
rot_schedule = tr_schedule
tor_schedule = tr_schedule
print('t schedule', tr_schedule)
rmsds_list, obrmsds, centroid_distances_list, failures, skipped, min_cross_distances_list, base_min_cross_distances_list, confidences_list, names_list = [], [], [], 0, 0, [], [], [], []
true_affinities_list, pred_affinities_list, run_times, min_self_distances_list, without_rec_overlap_list = [], [], [], [], []
N = args.samples_per_complex
names_no_rec_overlap = read_strings_from_txt(f'data/splits/timesplit_test_no_rec_overlap')
print('Size of test dataset: ', len(test_dataset))
for idx, orig_complex_graph in tqdm(enumerate(test_loader)):
if confidence_model is not None and not (confidence_args.use_original_model_cache or
confidence_args.transfer_weights) and orig_complex_graph.name[0] not in confidence_complex_dict.keys():
skipped += 1
print(f"HAPPENING | The confidence dataset did not contain {orig_complex_graph.name[0]}. We are skipping this complex.")
continue
success = 0
while not success: # keep trying in case of failure (sometimes stochastic)
try:
success = 1
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(N)]
randomize_position(data_list, score_model_args.no_torsion, args.no_random, score_model_args.tr_sigma_max)
pdb = None
if args.save_visualisation:
visualization_list = []
for idx, graph in enumerate(data_list):
lig = read_mol(args.data_dir, graph['name'][0], remove_hs=score_model_args.remove_hs)
pdb = PDBFile(lig)
pdb.add(lig, 0, 0)
pdb.add((orig_complex_graph['ligand'].pos + orig_complex_graph.original_center).detach().cpu(), 1, 0)
pdb.add((graph['ligand'].pos + graph.original_center).detach().cpu(), part=1, order=1)
visualization_list.append(pdb)
else:
visualization_list = None
rec_path = os.path.join(args.data_dir, data_list[0]["name"][0], f'{data_list[0]["name"][0]}_protein_processed.pdb')
if not os.path.exists(rec_path):
rec_path = os.path.join(args.data_dir, data_list[0]["name"][0], f'{data_list[0]["name"][0]}_protein_obabel_reduce.pdb')
rec = PandasPdb().read_pdb(rec_path)
rec_df = rec.df['ATOM']
receptor_pos = rec_df[['x_coord', 'y_coord', 'z_coord']].to_numpy().squeeze().astype(
np.float32) - orig_complex_graph.original_center.cpu().numpy()
receptor_pos = np.tile(receptor_pos, (N, 1, 1))
start_time = time.time()
if not args.no_model:
if confidence_model is not None and not (
confidence_args.use_original_model_cache or confidence_args.transfer_weights):
confidence_data_list = [copy.deepcopy(confidence_complex_dict[orig_complex_graph.name[0]]) for _ in
range(N)]
else:
confidence_data_list = None
data_list, confidence = sampling(data_list=data_list, model=model,
inference_steps=args.actual_steps if args.actual_steps is not None else args.inference_steps,
tr_schedule=tr_schedule, rot_schedule=rot_schedule,
tor_schedule=tor_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=score_model_args,
no_random=args.no_random,
ode=args.ode, visualization_list=visualization_list,
confidence_model=confidence_model,
confidence_data_list=confidence_data_list,
confidence_model_args=confidence_model_args,
batch_size=args.batch_size,
no_final_step_noise=args.no_final_step_noise)
run_times.append(time.time() - start_time)
if score_model_args.no_torsion: orig_complex_graph['ligand'].orig_pos = (orig_complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy())
filterHs = torch.not_equal(data_list[0]['ligand'].x[:, 0], 0).cpu().numpy()
if isinstance(orig_complex_graph['ligand'].orig_pos, list):
orig_complex_graph['ligand'].orig_pos = orig_complex_graph['ligand'].orig_pos[0]
ligand_pos = np.asarray(
[complex_graph['ligand'].pos.cpu().numpy()[filterHs] for complex_graph in data_list])
orig_ligand_pos = np.expand_dims(
orig_complex_graph['ligand'].orig_pos[filterHs] - orig_complex_graph.original_center.cpu().numpy(),
axis=0)
try:
mol = remove_all_hs(orig_complex_graph.mol[0])
rmsd = get_symmetry_rmsd(mol, orig_ligand_pos[0], [l for l in ligand_pos])
except Exception as e:
print("Using non corrected RMSD because of the error", e)
rmsd = np.sqrt(((ligand_pos - orig_ligand_pos) ** 2).sum(axis=2).mean(axis=1))
rmsds_list.append(rmsd)
centroid_distance = np.linalg.norm(ligand_pos.mean(axis=1) - orig_ligand_pos.mean(axis=1), axis=1)
if confidence is not None and isinstance(confidence_args.rmsd_classification_cutoff, list):
confidence = confidence[:, 0]
if confidence is not None:
confidence = confidence.cpu().numpy()
re_order = np.argsort(confidence)[::-1]
print(orig_complex_graph['name'], ' rmsd', np.around(rmsd, 1)[re_order], ' centroid distance',
np.around(centroid_distance, 1)[re_order], ' confidences ', np.around(confidence, 4)[re_order])
confidences_list.append(confidence)
else:
print(orig_complex_graph['name'], ' rmsd', np.around(rmsd, 1), ' centroid distance',
np.around(centroid_distance, 1))
centroid_distances_list.append(centroid_distance)
cross_distances = np.linalg.norm(receptor_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
min_cross_distances_list.append(np.min(cross_distances, axis=(1, 2)))
self_distances = np.linalg.norm(ligand_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
self_distances = np.where(np.eye(self_distances.shape[2]), np.inf, self_distances)
min_self_distances_list.append(np.min(self_distances, axis=(1, 2)))
base_cross_distances = np.linalg.norm(receptor_pos[:, :, None, :] - orig_ligand_pos[:, None, :, :], axis=-1)
base_min_cross_distances_list.append(np.min(base_cross_distances, axis=(1, 2)))
if args.save_visualisation:
if confidence is not None:
for rank, batch_idx in enumerate(re_order):
visualization_list[batch_idx].write(
f'{args.out_dir}/{data_list[batch_idx]["name"][0]}_{rank + 1}_{rmsd[batch_idx]:.1f}_{(confidence)[batch_idx]:.1f}.pdb')
else:
for rank, batch_idx in enumerate(np.argsort(rmsd)):
visualization_list[batch_idx].write(
f'{args.out_dir}/{data_list[batch_idx]["name"][0]}_{rank + 1}_{rmsd[batch_idx]:.1f}.pdb')
without_rec_overlap_list.append(1 if orig_complex_graph.name[0] in names_no_rec_overlap else 0)
names_list.append(orig_complex_graph.name[0])
except Exception as e:
print("Failed on", orig_complex_graph["name"], e)
failures += 1
success = 0
print('Performance without hydrogens included in the loss')
print(failures, "failures due to exceptions")
print(skipped, ' skipped because complex was not in confidence dataset')
performance_metrics = {}
for overlap in ['', 'no_overlap_']:
if 'no_overlap_' == overlap:
without_rec_overlap = np.array(without_rec_overlap_list, dtype=bool)
if without_rec_overlap.sum() == 0: continue
rmsds = np.array(rmsds_list)[without_rec_overlap]
min_self_distances = np.array(min_self_distances_list)[without_rec_overlap]
centroid_distances = np.array(centroid_distances_list)[without_rec_overlap]
confidences = np.array(confidences_list)[without_rec_overlap]
min_cross_distances = np.array(min_cross_distances_list)[without_rec_overlap]
base_min_cross_distances = np.array(base_min_cross_distances_list)[without_rec_overlap]
names = np.array(names_list)[without_rec_overlap]
else:
rmsds = np.array(rmsds_list)
min_self_distances = np.array(min_self_distances_list)
centroid_distances = np.array(centroid_distances_list)
confidences = np.array(confidences_list)
min_cross_distances = np.array(min_cross_distances_list)
base_min_cross_distances = np.array(base_min_cross_distances_list)
names = np.array(names_list)
run_times = np.array(run_times)
np.save(f'{args.out_dir}/{overlap}min_cross_distances.npy', min_cross_distances)
np.save(f'{args.out_dir}/{overlap}min_self_distances.npy', min_self_distances)
np.save(f'{args.out_dir}/{overlap}base_min_cross_distances.npy', base_min_cross_distances)
np.save(f'{args.out_dir}/{overlap}rmsds.npy', rmsds)
np.save(f'{args.out_dir}/{overlap}centroid_distances.npy', centroid_distances)
np.save(f'{args.out_dir}/{overlap}confidences.npy', confidences)
np.save(f'{args.out_dir}/{overlap}run_times.npy', run_times)
np.save(f'{args.out_dir}/{overlap}complex_names.npy', np.array(names))
performance_metrics.update({
f'{overlap}run_times_std': run_times.std().__round__(2),
f'{overlap}run_times_mean': run_times.mean().__round__(2),
f'{overlap}steric_clash_fraction': (
100 * (min_cross_distances < 0.4).sum() / len(min_cross_distances) / N).__round__(2),
f'{overlap}self_intersect_fraction': (
100 * (min_self_distances < 0.4).sum() / len(min_self_distances) / N).__round__(2),
f'{overlap}mean_rmsd': rmsds.mean(),
f'{overlap}rmsds_below_2': (100 * (rmsds < 2).sum() / len(rmsds) / N),
f'{overlap}rmsds_below_5': (100 * (rmsds < 5).sum() / len(rmsds) / N),
f'{overlap}rmsds_percentile_25': np.percentile(rmsds, 25).round(2),
f'{overlap}rmsds_percentile_50': np.percentile(rmsds, 50).round(2),
f'{overlap}rmsds_percentile_75': np.percentile(rmsds, 75).round(2),
f'{overlap}mean_centroid': centroid_distances.mean().__round__(2),
f'{overlap}centroid_below_2': (100 * (centroid_distances < 2).sum() / len(centroid_distances) / N).__round__(2),
f'{overlap}centroid_below_5': (100 * (centroid_distances < 5).sum() / len(centroid_distances) / N).__round__(2),
f'{overlap}centroid_percentile_25': np.percentile(centroid_distances, 25).round(2),
f'{overlap}centroid_percentile_50': np.percentile(centroid_distances, 50).round(2),
f'{overlap}centroid_percentile_75': np.percentile(centroid_distances, 75).round(2),
})
if N >= 5:
top5_rmsds = np.min(rmsds[:, :5], axis=1)
top5_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
top5_min_cross_distances = min_cross_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
top5_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top5_steric_clash_fraction': (
100 * (top5_min_cross_distances < 0.4).sum() / len(top5_min_cross_distances)).__round__(2),
f'{overlap}top5_self_intersect_fraction': (
100 * (top5_min_self_distances < 0.4).sum() / len(top5_min_self_distances)).__round__(2),
f'{overlap}top5_rmsds_below_2': (100 * (top5_rmsds < 2).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_below_5': (100 * (top5_rmsds < 5).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_percentile_25': np.percentile(top5_rmsds, 25).round(2),
f'{overlap}top5_rmsds_percentile_50': np.percentile(top5_rmsds, 50).round(2),
f'{overlap}top5_rmsds_percentile_75': np.percentile(top5_rmsds, 75).round(2),
f'{overlap}top5_centroid_below_2': (
100 * (top5_centroid_distances < 2).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_below_5': (
100 * (top5_centroid_distances < 5).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_percentile_25': np.percentile(top5_centroid_distances, 25).round(2),
f'{overlap}top5_centroid_percentile_50': np.percentile(top5_centroid_distances, 50).round(2),
f'{overlap}top5_centroid_percentile_75': np.percentile(top5_centroid_distances, 75).round(2),
})
if N >= 10:
top10_rmsds = np.min(rmsds[:, :10], axis=1)
top10_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
top10_min_cross_distances = min_cross_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
top10_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_steric_clash_fraction': (
100 * (top10_min_cross_distances < 0.4).sum() / len(top10_min_cross_distances)).__round__(2),
f'{overlap}top10_self_intersect_fraction': (
100 * (top10_min_self_distances < 0.4).sum() / len(top10_min_self_distances)).__round__(2),
f'{overlap}top10_rmsds_below_2': (100 * (top10_rmsds < 2).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_below_5': (100 * (top10_rmsds < 5).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_percentile_25': np.percentile(top10_rmsds, 25).round(2),
f'{overlap}top10_rmsds_percentile_50': np.percentile(top10_rmsds, 50).round(2),
f'{overlap}top10_rmsds_percentile_75': np.percentile(top10_rmsds, 75).round(2),
f'{overlap}top10_centroid_below_2': (
100 * (top10_centroid_distances < 2).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_below_5': (
100 * (top10_centroid_distances < 5).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_percentile_25': np.percentile(top10_centroid_distances, 25).round(2),
f'{overlap}top10_centroid_percentile_50': np.percentile(top10_centroid_distances, 50).round(2),
f'{overlap}top10_centroid_percentile_75': np.percentile(top10_centroid_distances, 75).round(2),
})
if confidence_model is not None:
confidence_ordering = np.argsort(confidences, axis=1)[:, ::-1]
filtered_rmsds = rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
filtered_centroid_distances = centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
filtered_min_cross_distances = min_cross_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:,
0]
filtered_min_self_distances = min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
performance_metrics.update({
f'{overlap}filtered_self_intersect_fraction': (
100 * (filtered_min_self_distances < 0.4).sum() / len(filtered_min_self_distances)).__round__(
2),
f'{overlap}filtered_steric_clash_fraction': (
100 * (filtered_min_cross_distances < 0.4).sum() / len(filtered_min_cross_distances)).__round__(
2),
f'{overlap}filtered_rmsds_below_2': (100 * (filtered_rmsds < 2).sum() / len(filtered_rmsds)).__round__(2),
f'{overlap}filtered_rmsds_below_5': (100 * (filtered_rmsds < 5).sum() / len(filtered_rmsds)).__round__(2),
f'{overlap}filtered_rmsds_percentile_25': np.percentile(filtered_rmsds, 25).round(2),
f'{overlap}filtered_rmsds_percentile_50': np.percentile(filtered_rmsds, 50).round(2),
f'{overlap}filtered_rmsds_percentile_75': np.percentile(filtered_rmsds, 75).round(2),
f'{overlap}filtered_centroid_below_2': (
100 * (filtered_centroid_distances < 2).sum() / len(filtered_centroid_distances)).__round__(2),
f'{overlap}filtered_centroid_below_5': (
100 * (filtered_centroid_distances < 5).sum() / len(filtered_centroid_distances)).__round__(2),
f'{overlap}filtered_centroid_percentile_25': np.percentile(filtered_centroid_distances, 25).round(2),
f'{overlap}filtered_centroid_percentile_50': np.percentile(filtered_centroid_distances, 50).round(2),
f'{overlap}filtered_centroid_percentile_75': np.percentile(filtered_centroid_distances, 75).round(2),
})
if N >= 5:
top5_filtered_rmsds = np.min(rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)
top5_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
top5_filtered_min_cross_distances = \
min_cross_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
top5_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top5_filtered_self_intersect_fraction': (
100 * (top5_filtered_min_cross_distances < 0.4).sum() / len(
top5_filtered_min_cross_distances)).__round__(2),
f'{overlap}top5_filtered_steric_clash_fraction': (
100 * (top5_filtered_min_cross_distances < 0.4).sum() / len(
top5_filtered_min_cross_distances)).__round__(2),
f'{overlap}top5_filtered_rmsds_below_2': (
100 * (top5_filtered_rmsds < 2).sum() / len(top5_filtered_rmsds)).__round__(2),
f'{overlap}top5_filtered_rmsds_below_5': (
100 * (top5_filtered_rmsds < 5).sum() / len(top5_filtered_rmsds)).__round__(2),
f'{overlap}top5_filtered_rmsds_percentile_25': np.percentile(top5_filtered_rmsds, 25).round(2),
f'{overlap}top5_filtered_rmsds_percentile_50': np.percentile(top5_filtered_rmsds, 50).round(2),
f'{overlap}top5_filtered_rmsds_percentile_75': np.percentile(top5_filtered_rmsds, 75).round(2),
f'{overlap}top5_filtered_centroid_below_2': (100 * (top5_filtered_centroid_distances < 2).sum() / len(
top5_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_filtered_centroid_below_5': (100 * (top5_filtered_centroid_distances < 5).sum() / len(
top5_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_filtered_centroid_percentile_25': np.percentile(top5_filtered_centroid_distances,
25).round(2),
f'{overlap}top5_filtered_centroid_percentile_50': np.percentile(top5_filtered_centroid_distances,
50).round(2),
f'{overlap}top5_filtered_centroid_percentile_75': np.percentile(top5_filtered_centroid_distances,
75).round(2),
})
if N >= 10:
top10_filtered_rmsds = np.min(rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10],
axis=1)
top10_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
top10_filtered_min_cross_distances = \
min_cross_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
top10_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_filtered_self_intersect_fraction': (
100 * (top10_filtered_min_cross_distances < 0.4).sum() / len(
top10_filtered_min_cross_distances)).__round__(2),
f'{overlap}top10_filtered_steric_clash_fraction': (
100 * (top10_filtered_min_cross_distances < 0.4).sum() / len(
top10_filtered_min_cross_distances)).__round__(2),
f'{overlap}top10_filtered_rmsds_below_2': (
100 * (top10_filtered_rmsds < 2).sum() / len(top10_filtered_rmsds)).__round__(2),
f'{overlap}top10_filtered_rmsds_below_5': (
100 * (top10_filtered_rmsds < 5).sum() / len(top10_filtered_rmsds)).__round__(2),
f'{overlap}top10_filtered_rmsds_percentile_25': np.percentile(top10_filtered_rmsds, 25).round(2),
f'{overlap}top10_filtered_rmsds_percentile_50': np.percentile(top10_filtered_rmsds, 50).round(2),
f'{overlap}top10_filtered_rmsds_percentile_75': np.percentile(top10_filtered_rmsds, 75).round(2),
f'{overlap}top10_filtered_centroid_below_2': (100 * (top10_filtered_centroid_distances < 2).sum() / len(
top10_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_filtered_centroid_below_5': (100 * (top10_filtered_centroid_distances < 5).sum() / len(
top10_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_filtered_centroid_percentile_25': np.percentile(top10_filtered_centroid_distances,
25).round(2),
f'{overlap}top10_filtered_centroid_percentile_50': np.percentile(top10_filtered_centroid_distances,
50).round(2),
f'{overlap}top10_filtered_centroid_percentile_75': np.percentile(top10_filtered_centroid_distances,
75).round(2),
})
for k in performance_metrics:
print(k, performance_metrics[k])
if args.wandb:
wandb.log(performance_metrics)
histogram_metrics_list = [('rmsd', rmsds[:, 0]),
('centroid_distance', centroid_distances[:, 0]),
('mean_rmsd', rmsds.mean(axis=1)),
('mean_centroid_distance', centroid_distances.mean(axis=1))]
if N >= 5:
histogram_metrics_list.append(('top5_rmsds', top5_rmsds))
histogram_metrics_list.append(('top5_centroid_distances', top5_centroid_distances))
if N >= 10:
histogram_metrics_list.append(('top10_rmsds', top10_rmsds))
histogram_metrics_list.append(('top10_centroid_distances', top10_centroid_distances))
if confidence_model is not None:
histogram_metrics_list.append(('filtered_rmsd', filtered_rmsds))
histogram_metrics_list.append(('filtered_centroid_distance', filtered_centroid_distances))
if N >= 5:
histogram_metrics_list.append(('top5_filtered_rmsds', top5_filtered_rmsds))
histogram_metrics_list.append(('top5_filtered_centroid_distances', top5_filtered_centroid_distances))
if N >= 10:
histogram_metrics_list.append(('top10_filtered_rmsds', top10_filtered_rmsds))
histogram_metrics_list.append(('top10_filtered_centroid_distances', top10_filtered_centroid_distances))