Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import joblib | |
from huggingface_hub import hf_hub_download | |
model = joblib.load(hf_hub_download(repo_id="alperugurcan/mercedes", filename="mercedes_model.joblib")) | |
feature_names = joblib.load(hf_hub_download(repo_id="alperugurcan/mercedes", filename="feature_names.joblib")) | |
CONFIGS = { | |
"z (360 cases)": "z", | |
"ak (349 cases)": "ak", | |
"y (324 cases)": "y", | |
"ay (313 cases)": "ay", | |
"t (306 cases)": "t", | |
"x (300 cases)": "x", | |
"o (269 cases)": "o", | |
"f (227 cases)": "f", | |
"n (195 cases)": "n", | |
"w (182 cases)": "w" | |
} | |
def predict(option): | |
input_data = {name: 0.0 for name in feature_names} | |
input_data[f'X0_{CONFIGS[option]}'] = 1.0 | |
prediction = model.predict(pd.DataFrame([input_data]))[0] | |
return f"Predicted manufacturing time: {prediction:.2f} seconds" | |
gr.Interface( | |
fn=predict, | |
inputs=gr.Dropdown(choices=list(CONFIGS.keys()), label="Manufacturing Configuration"), | |
outputs=gr.Textbox(label="Prediction"), | |
title="Mercedes-Benz Manufacturing Time Predictor", | |
description="Select a manufacturing configuration to predict production time.", | |
theme=gr.themes.Soft() | |
).launch(debug=True) |