|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
|
|
class BackPropogation: |
|
def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'): |
|
self.bias = 0 |
|
self.learning_rate = learning_rate |
|
self.max_epochs = epochs |
|
self.activation_function = activation_function |
|
|
|
|
|
def activate(self, x): |
|
if self.activation_function == 'step': |
|
return 1 if x >= 0 else 0 |
|
elif self.activation_function == 'sigmoid': |
|
return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0 |
|
elif self.activation_function == 'relu': |
|
return 1 if max(0,x)>=0.5 else 0 |
|
|
|
def fit(self, X, y): |
|
error_sum=0 |
|
n_features = X.shape[1] |
|
self.weights = np.zeros((n_features)) |
|
for epoch in tqdm(range(self.max_epochs)): |
|
for i in range(len(X)): |
|
inputs = X[i] |
|
target = y[i] |
|
weighted_sum = np.dot(inputs, self.weights) + self.bias |
|
prediction = self.activate(weighted_sum) |
|
|
|
|
|
error = target - prediction |
|
self.weights += self.learning_rate * error * inputs |
|
self.bias += self.learning_rate * error |
|
|
|
print(f"Updated Weights after epoch {epoch} with {self.weights}") |
|
print("Training Completed") |
|
|
|
def predict(self, X): |
|
predictions = [] |
|
for i in range(len(X)): |
|
inputs = X[i] |
|
weighted_sum = np.dot(inputs, self.weights) + self.bias |
|
prediction = self.activate(weighted_sum) |
|
predictions.append(prediction) |
|
return predictions |
|
|
|
|
|
|
|
|
|
|
|
|