Spaces:
Runtime error
Runtime error
made changes in ui and added barplot
Browse files- app.py +177 -27
- flagged/img/2230c2787153e177b50659d8d00542de6771f0ff/tmptde5e2ko.png +0 -0
- flagged/log.csv +2 -0
- flagged/output/tmp11i68aun.json +1 -0
- keras_digit_temp.h5 +3 -0
app.py
CHANGED
@@ -5,6 +5,7 @@ from tensorflow.keras.layers import Dense, Flatten
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
|
|
8 |
#%matplotlib inline
|
9 |
|
10 |
|
@@ -15,46 +16,195 @@ print(X_train.shape)
|
|
15 |
|
16 |
print(y_train)
|
17 |
|
18 |
-
for i in range(9):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
X_train=X_train/255.0
|
24 |
X_test=X_test/255.0
|
25 |
|
26 |
-
model=tf.keras.models.Sequential([Flatten(input_shape=(28,28)),
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
|
38 |
-
model.compile(optimizer='adam',
|
39 |
-
|
40 |
-
|
41 |
-
model.fit(X_train,y_train, epochs=10)
|
42 |
-
model.save("keras_digit_temp.h5")
|
43 |
-
test=X_test[0].reshape(-1,28,28)
|
44 |
-
predicted=model.predict(test)
|
45 |
-
print(predicted)
|
46 |
|
47 |
-
def
|
48 |
-
|
49 |
-
img_3d=img.reshape(-1,28,28)
|
50 |
-
img_resized=img_3d/255.0
|
51 |
-
pred_prob=loaded_model.predict(img_resized)
|
52 |
-
predicted_val=np.argmax(pred_prob)
|
53 |
-
return int(predicted_val)
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
iface.launch(debug='true')
|
58 |
|
59 |
|
60 |
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
#%matplotlib inline
|
10 |
|
11 |
|
|
|
16 |
|
17 |
print(y_train)
|
18 |
|
19 |
+
# for i in range(9):
|
20 |
+
# plt.subplot(330+1+i)
|
21 |
+
# plt.imshow(X_train[i])
|
22 |
+
# plt.show()
|
23 |
|
24 |
X_train=X_train/255.0
|
25 |
X_test=X_test/255.0
|
26 |
|
27 |
+
# model=tf.keras.models.Sequential([Flatten(input_shape=(28,28)),
|
28 |
|
29 |
+
# Dense(650,activation='relu'),
|
30 |
|
31 |
+
# Dense(450,activation='relu'),
|
32 |
|
33 |
+
# Dense(250,activation='relu'),
|
34 |
|
35 |
+
# Dense(150,activation='relu'),
|
36 |
|
37 |
+
# Dense(10,activation=tf.nn.softmax)])
|
38 |
|
39 |
+
# model.compile(optimizer='adam',
|
40 |
+
# loss='sparse_categorical_crossentropy',
|
41 |
+
# metrics=['accuracy'])
|
42 |
+
# model.fit(X_train,y_train, epochs=10)
|
43 |
+
# model.save("keras_digit_temp.h5")
|
44 |
+
# test=X_test[0].reshape(-1,28,28)
|
45 |
+
# predicted=model.predict(test)
|
46 |
+
# print(predicted)
|
47 |
|
48 |
+
def predict_digit(img):
|
49 |
+
if img is not None:
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
loaded_model = keras.models.load_model('keras_digit_temp.h5')
|
52 |
+
|
53 |
+
|
54 |
+
img_3d=img.reshape(-1,28,28)
|
55 |
+
img_resized=img_3d/255.0
|
56 |
+
pred_prob=loaded_model.predict(img_resized)
|
57 |
+
|
58 |
+
pred_prob=pred_prob*100
|
59 |
+
|
60 |
+
print((pred_prob))
|
61 |
+
# prob0= 100*pred_prob[0]
|
62 |
+
# prob1= 100*pred_prob[1]
|
63 |
+
# prob2= 100*pred_prob[2]
|
64 |
+
# prob3= 100*pred_prob[3]
|
65 |
+
# prob4= 100*pred_prob[4]
|
66 |
+
# prob5= 100*pred_prob[5]
|
67 |
+
# prob6= 100*pred_prob[6]
|
68 |
+
# prob7= 100*pred_prob[7]
|
69 |
+
# prob8= 100*pred_prob[8]
|
70 |
+
# prob9= 100*pred_prob[9]
|
71 |
+
|
72 |
+
# print(prob2)
|
73 |
+
|
74 |
+
simple = pd.DataFrame(
|
75 |
+
{
|
76 |
+
"a": ["0", "1", "2", "3", "4", "5", "6", "7", "8","9"],
|
77 |
+
"b": pred_prob[0], #[28, 55, 43, 91, 81, 53, 19, 87, 52,80],
|
78 |
+
}
|
79 |
+
)
|
80 |
+
|
81 |
+
predicted_val=np.argmax(pred_prob)
|
82 |
+
return int(predicted_val), gr.BarPlot.update(
|
83 |
+
simple,
|
84 |
+
x="a",
|
85 |
+
y="b",
|
86 |
+
x_title="Digits",
|
87 |
+
y_title="Identification Probabilities",
|
88 |
+
title="Identification Probability",
|
89 |
+
tooltip=["a", "b"],
|
90 |
+
vertical=False,
|
91 |
+
y_lim=[0, 100],
|
92 |
+
)
|
93 |
+
|
94 |
+
else:
|
95 |
+
return " "
|
96 |
+
|
97 |
+
|
98 |
+
# iface=gr.Interface(prdict_digit, inputs='sketchpad', outputs=['label', gr.Slider(0,100, label='Probably 0'), gr.Slider(0,100, label='Probably 1')] ).launch()
|
99 |
+
|
100 |
+
# iface.launch(debug='true')
|
101 |
+
|
102 |
+
with gr.Blocks() as demo:
|
103 |
+
with gr.Row():
|
104 |
+
with gr.Column():
|
105 |
+
gr.Markdown("Digit Identify", elem_id='title_head')
|
106 |
+
gr.Markdown("By Alok")
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column():
|
109 |
+
with gr.Row():
|
110 |
+
skch=gr.Sketchpad()
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
clear=gr.ClearButton(skch)
|
114 |
+
with gr.Column():
|
115 |
+
btn=gr.Button("Identify")
|
116 |
+
|
117 |
+
with gr.Column():
|
118 |
+
gr.Markdown("Identified digit")
|
119 |
+
label=gr.Label("")
|
120 |
+
gr.Markdown("Other possible values")
|
121 |
+
bar = gr.BarPlot()
|
122 |
+
btn.click(predict_digit,inputs=skch,outputs=[label,bar])
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
demo.launch()
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
# import tensorflow as tf
|
152 |
+
# from tensorflow import keras
|
153 |
+
# from tensorflow.keras import Sequential
|
154 |
+
# from tensorflow.keras.layers import Dense, Flatten
|
155 |
+
# import matplotlib.pyplot as plt
|
156 |
+
# import gradio as gr
|
157 |
+
# import numpy as np
|
158 |
+
# %matplotlib inline
|
159 |
+
|
160 |
+
|
161 |
+
# objt=tf.keras.datasets.mnist
|
162 |
+
# (X_train, y_train), (X_test,y_test)=objt.load_data()
|
163 |
+
|
164 |
+
# print(X_train.shape)
|
165 |
+
|
166 |
+
# print(y_train)
|
167 |
+
|
168 |
+
# for i in range(9):
|
169 |
+
# plt.subplot(330+1+i)
|
170 |
+
# plt.imshow(X_train[i])
|
171 |
+
# plt.show()
|
172 |
+
|
173 |
+
# X_train=X_train/255.0
|
174 |
+
# X_test=X_test/255.0
|
175 |
+
|
176 |
+
# model=tf.keras.models.Sequential([Flatten(input_shape=(28,28)),
|
177 |
+
|
178 |
+
# Dense(650,activation='relu'),
|
179 |
+
|
180 |
+
# Dense(450,activation='relu'),
|
181 |
+
|
182 |
+
# Dense(250,activation='relu'),
|
183 |
+
|
184 |
+
# Dense(150,activation='relu'),
|
185 |
+
|
186 |
+
# Dense(10,activation=tf.nn.softmax)])
|
187 |
+
|
188 |
+
# model.compile(optimizer='adam',
|
189 |
+
# loss='sparse_categorical_crossentropy',
|
190 |
+
# metrics=['accuracy'])
|
191 |
+
# model.fit(X_train,y_train, epochs=10)
|
192 |
+
# model.save("keras_digit_temp.h5")
|
193 |
+
# test=X_test[0].reshape(-1,28,28)
|
194 |
+
# predicted=model.predict(test)
|
195 |
+
# print(predicted)
|
196 |
+
|
197 |
+
# def prdict_digit(img):
|
198 |
+
# loaded_model = keras.models.load_model('keras_digit_temp.h5')
|
199 |
+
# img_3d=img.reshape(-1,28,28)
|
200 |
+
# img_resized=img_3d/255.0
|
201 |
+
# pred_prob=loaded_model.predict(img_resized)
|
202 |
+
# predicted_val=np.argmax(pred_prob)
|
203 |
+
# return int(predicted_val)
|
204 |
+
|
205 |
+
# iface=gr.Interface(prdict_digit, inputs='sketchpad', outputs='label').launch()
|
206 |
|
207 |
+
# iface.launch(debug='true')
|
208 |
|
209 |
|
210 |
|
flagged/img/2230c2787153e177b50659d8d00542de6771f0ff/tmptde5e2ko.png
ADDED
![]() |
flagged/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
img,output,flag,username,timestamp
|
2 |
+
D:\Projects\alok-digit-identify\flagged\img\2230c2787153e177b50659d8d00542de6771f0ff\tmptde5e2ko.png,D:\Projects\alok-digit-identify\flagged\output\tmp11i68aun.json,,,2023-09-11 00:52:06.273490
|
flagged/output/tmp11i68aun.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"label": "2"}
|
keras_digit_temp.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:381032914c5af60afcaa0aaf305475fd6d9228ef6496bb56c3153913b1974d5c
|
3 |
+
size 11511128
|