Spaces:
Runtime error
Runtime error
import gradio as gr | |
#import streamlit as st | |
from sklearn.neural_network import MLPClassifier | |
import torchvision.datasets as datasets | |
import seaborn as sns | |
import pickle | |
#dark mode seaborn | |
sns.set_style("darkgrid") | |
mnist_trainset = datasets.MNIST(root='./data', train=True, download=True, transform=None) | |
mnist_testset = datasets.MNIST(root='./data', train=False, download=True, transform=None) | |
print(mnist_trainset.data.shape) | |
print(mnist_testset.data.shape) | |
print(mnist_trainset.targets.shape) | |
print(mnist_testset.targets.shape) | |
X_train = mnist_trainset.data | |
y_train = mnist_trainset.targets | |
X_test = mnist_testset.data | |
y_test = mnist_testset.targets | |
X_train = X_train.numpy() | |
X_test = X_test.numpy() | |
y_train = y_train.numpy() | |
y_test = y_test.numpy() | |
X_train = X_train.reshape(60000, 784)/255.0 | |
X_test = X_test.reshape(10000, 784)/255.0 | |
#train the model | |
mlp = MLPClassifier(hidden_layer_sizes=(32,32)) | |
mlp.fit(X_train, y_train) | |
#print the accuracies | |
print("Training Accuracy: ", mlp.score(X_train, y_train)) | |
print("Testing Accuracy: ", mlp.score(X_test, y_test)) | |
pickle.dump(mlp, open("digitmodel.sav", 'wb')) | |
loaded_model = pickle.load(open("digitmodel.sav", 'rb')) #loding saved model | |
def predict(img): | |
img = img.reshape(1,784)/255.0 | |
prediction = loaded_model.predict(img)[0] | |
return int(prediction) | |
gr.Interface(fn= predict, inputs = "sketchpad", outputs ="label").launch() | |