|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<meta charset="utf-8"> |
|
<meta name="description" |
|
content="Demo Page of BEYOND ICML 2024."> |
|
<meta name="keywords" content="BEYOND, Adversarial Examples, Adversarial Detection"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1"> |
|
<title>Be Your Own Neighborhood: Detecting Adversarial Examples by the Neighborhood Relations Built on Self-Supervised Learning</title> |
|
|
|
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" |
|
rel="stylesheet"> |
|
|
|
<link rel="stylesheet" href="./static/css/bulma.min.css"> |
|
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css"> |
|
<link rel="stylesheet" href="./static/css/bulma-slider.min.css"> |
|
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css"> |
|
<link rel="stylesheet" |
|
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"> |
|
<link rel="stylesheet" href="./static/css/index.css"> |
|
<link rel="stylesheet" href="./static/css/custom.css"> |
|
<link rel="icon" href="./static/images/favicon.svg"> |
|
|
|
|
|
<script src="https://code.jquery.com/jquery-3.6.0.js"></script> |
|
<script src="https://code.jquery.com/ui/1.13.2/jquery-ui.js"></script> |
|
<script defer src="./static/js/fontawesome.all.min.js"></script> |
|
<script src="./static/js/bulma-carousel.min.js"></script> |
|
<script src="./static/js/bulma-slider.min.js"></script> |
|
<script src="./static/js/index.js"></script> |
|
|
|
|
|
|
|
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> |
|
|
|
<script> |
|
$(document).ready(function(){ |
|
$('#adaptive-loss-formula-list').on('click', 'a', function(e) { |
|
e.preventDefault(); |
|
if (!$(this).hasClass('selected')) { |
|
|
|
$('.formula-content').hide(200); |
|
$('.formula-list > a').removeClass('selected'); |
|
$(this).addClass('selected'); |
|
var target = $(this).attr('href'); |
|
$(target).show(200); |
|
} |
|
}); |
|
|
|
|
|
$('#adaptive-dataset').on('click', 'a', function(e) { |
|
e.preventDefault(); |
|
if (!$(this).hasClass('selected')) { |
|
|
|
$('.interpolation-video-column').hide(200); |
|
$('#adaptive-dataset > a').removeClass('selected'); |
|
$(this).addClass('selected'); |
|
var target = $(this).attr('href'); |
|
$(target).show(200); |
|
} |
|
}); |
|
|
|
}) |
|
</script> |
|
|
|
<style type="text/css"> |
|
.tg {border-collapse:collapse;border-spacing:0;} |
|
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; |
|
overflow:hidden;padding:10px 5px;word-break:normal;} |
|
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; |
|
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} |
|
.tg .tg-baqh{text-align:center;vertical-align:top} |
|
.tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top} |
|
.tg .tg-2imo{font-style:italic;text-align:center;text-decoration:underline;vertical-align:top} |
|
</style> |
|
</head> |
|
<body> |
|
|
|
<section class="hero"> |
|
<div class="hero-body"> |
|
<div class="container is-max-desktop"> |
|
<div class="columns is-centered"> |
|
<div class="column has-text-centered"> |
|
<h1 class="title is-1 publication-title">Be Your Own Neighborhood: Detecting Adversarial Examples by the Neighborhood Relations Built on Self-Supervised Learning</h1> |
|
<div class="is-size-5 publication-authors"> |
|
<span class="author-block"> |
|
<a href="#" target="_blank">Zhiyuan He</a><sup>1*</sup>,</span> |
|
<span class="author-block"> |
|
<a href="https://yangyijune.github.io/" target="_blank">Yijun Yang</a><sup>1*</sup>,</span> |
|
<span class="author-block"> |
|
<a href="https://sites.google.com/site/pinyuchenpage/home" target="_blank">Pin-Yu Chen</a><sup>2</sup>, |
|
</span> |
|
<span class="author-block"> |
|
<a href="https://cure-lab.github.io/" target="_blank">Qiang Xu</a><sup>1</sup>, |
|
</span> |
|
<span class="author-block"> |
|
<a href="https://tsungyiho.github.io/" target="_blank">Tsung-Yi Ho</a><sup>1</sup>, |
|
</span> |
|
</div> |
|
|
|
<div class="is-size-5 publication-authors"> |
|
<span class="author-block"><sup>*</sup>Equal contribution,</span> |
|
<span class="author-block"><sup>1</sup>The Chinese University of Hong Kong,</span> |
|
<span class="author-block"><sup>2</sup>IBM Research</span> |
|
</div> |
|
|
|
<div class="column has-text-centered"> |
|
<div class="publication-links"> |
|
|
|
<span class="link-block"> |
|
<a href="https://arxiv.org/abs/2209.00005" target="_blank" |
|
class="external-link button is-normal is-rounded is-dark"> |
|
<span class="icon"> |
|
<i class="fas fa-file-pdf"></i> |
|
</span> |
|
<span>Paper</span> |
|
</a> |
|
</span> |
|
<span class="link-block"> |
|
<a href="https://arxiv.org/abs/2209.00005" target="_blank" |
|
class="external-link button is-normal is-rounded is-dark"> |
|
<span class="icon"> |
|
<i class="ai ai-arxiv"></i> |
|
</span> |
|
<span>arXiv</span> |
|
</a> |
|
</span> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</div> |
|
|
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
</section> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<section class="section"> |
|
<div class="container is-max-desktop"> |
|
|
|
<div class="columns is-centered has-text-centered"> |
|
<div class="column is-four-fifths"> |
|
<h2 class="title is-3">Abstract</h2> |
|
<div class="content has-text-justified"> |
|
<p> |
|
Deep Neural Networks (DNNs) have achieved excellent performance in various fields. However, DNNs’ vulnerability to |
|
Adversarial Examples (AE) hinders their deployments to safety-critical applications. In this paper, we present <strong>BEYOND</strong>, |
|
an innovative AE detection frameworkdesigned for reliable predictions. BEYOND identifies AEs by distinguishing the AE’s |
|
abnormal relation with its augmented versions, i.e. neighbors, from two prospects: representation similarity and label |
|
consistency. An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the |
|
label for its highly informative representation capacity compared to supervised learning models. We found clean samples |
|
maintain a high degree of representation similarity and label consistency relative to their neighbors, in contrast to AEs |
|
which exhibit significant discrepancies. We explain this obser vation and show that leveraging this discrepancy BEYOND can |
|
accurately detect AEs. Additionally, we develop a rigorous justification for the effectiveness of BEYOND. Furthermore, as a |
|
plug-and-play model, BEYOND can easily cooperate with the Adversarial Trained Classifier (ATC), achieving state-of-the-art |
|
(SOTA) robustness accuracy. Experimental results show that BEYOND outperforms baselines by a large margin, especially under |
|
adaptive attacks. Empowered by the robust relationship built on SSL, we found that BEYOND outperforms baselines in terms |
|
of both detection ability and speed. |
|
</p> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
</div> |
|
</section> |
|
|
|
|
|
<section class="section"> |
|
<div class="container is-max-desktop"> |
|
<h2 class="title is-3">Neighborhood Relations of AEs and Clean Samples</h2> |
|
<div class="columns is-centered"> |
|
<div class="column container-centered"> |
|
<img src="./static/images/relations.jpg" alt="Neighborhood Relations of Benign Examples and AEs"/> |
|
<p> |
|
<strong>Figure 1. Neighborhood Relations of AEs and Clean Samples.</strong> |
|
</p> |
|
</div> |
|
</div> |
|
<div class="columns is-centered"> |
|
<div class="column has-text-justified"> |
|
<p> |
|
Latent Neighborhood Graph (LNG) represents the relationship between the input sample and the reference sample as a graph, |
|
whose nodes are embeddings extracted by DDN and edges are built according to distances between the input node and reference nodes, |
|
and train a graph neural network to detect AEs. |
|
</p> |
|
</div> |
|
</div> |
|
</div> |
|
</section> |
|
|
|
|
|
|
|
<section class="section"> |
|
<div class="container is-max-desktop"> |
|
<h2 class="title is-3">Method Overview of BEYOND</h2> |
|
<div class="columns is-centered"> |
|
<div class="column container-centered"> |
|
<img src="./static/images/overview.png" alt="Method Overview of BEYOND"/> |
|
<p><strong>Figure 2. Overview of BEYOND.</strong> First, we augment the input image to obtain a bunch of its neighbors. Then, we |
|
perform the label consistency detection mechanism on the classifier’s prediction of the input image and that of neighbors predicted by |
|
SSL’s classification head. Meanwhile, the representation similarity mechanism employs cosine distance to measure the similarity among |
|
the input image and its neighbors. Finally, The input image with poor label consistency or representation similarity is flagged as AE.</p> |
|
</div> |
|
</div> |
|
</div> |
|
</section> |
|
|
|
|
|
|
|
|
|
<section class="section"> |
|
<div class="container is-max-desktop"> |
|
<h2 class="title is-3">Detection Performance</h2> |
|
<div class="columns is-centered"> |
|
<div class="column container-centered"> |
|
<table class="tg" border="1" style="width:100%;"> |
|
<caption><strong>Table 1.</strong>The Area Under the ROC Curve (AUC) of Different Adversarial Detection Approaches on CIFAR-10. LNG |
|
is not open-sourced and the data comes from its report. To align with baselines, classifier: ResNet110, FGSM: ε = 0.05, PGD: |
|
ε = 0.02. Note that BEYOND needs no AE for training, leading to the same value on both seen and unseen settings. The <strong>bold</strong> values |
|
are the best performance, and the <u><i>underlined italicized</i></u> values are the second-best performanc</caption> |
|
<thead> |
|
<tr> |
|
<th class="tg-amwm" rowspan="2">AUC(%)</th> |
|
<th class="tg-baqh" colspan="4"><span style="font-weight:bold;font-style:italic">Unse</span><span style="font-weight:bold">e</span><span style="font-weight:bold;font-style:italic">n</span><span style="font-weight:bold">: </span>Attacks used in training are preclude from tests</th> |
|
<th class="tg-baqh" colspan="5"><span style="font-weight:bold;font-style:italic">Seen</span><span style="font-weight:bold">:</span> Attacks used in training are included in tests</th> |
|
</tr> |
|
<tr> |
|
<th class="tg-baqh">FGSM</th> |
|
<th class="tg-baqh">PGD</th> |
|
<th class="tg-baqh">AutoAttack</th> |
|
<th class="tg-baqh">Square</th> |
|
<th class="tg-baqh">FGSM</th> |
|
<th class="tg-baqh">PGD</th> |
|
<th class="tg-baqh">CW</th> |
|
<th class="tg-baqh">AutoAttack</th> |
|
<th class="tg-baqh">Square</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td class="tg-baqh">DkNN</td> |
|
<td class="tg-baqh">61.55</td> |
|
<td class="tg-baqh">51.22</td> |
|
<td class="tg-baqh">52.12</td> |
|
<td class="tg-baqh">59.46</td> |
|
<td class="tg-baqh">61.55</td> |
|
<td class="tg-baqh">51.22</td> |
|
<td class="tg-baqh">61.52</td> |
|
<td class="tg-baqh">52.12</td> |
|
<td class="tg-baqh">59.46</td> |
|
</tr> |
|
<tr> |
|
<td class="tg-baqh">kNN</td> |
|
<td class="tg-baqh">61.83</td> |
|
<td class="tg-baqh">54.52</td> |
|
<td class="tg-baqh">52.67</td> |
|
<td class="tg-baqh">73.39</td> |
|
<td class="tg-baqh">61.83</td> |
|
<td class="tg-baqh">54.52</td> |
|
<td class="tg-baqh">62.23</td> |
|
<td class="tg-baqh">52.67</td> |
|
<td class="tg-baqh">73.39</td> |
|
</tr> |
|
<tr> |
|
<td class="tg-baqh">LID</td> |
|
<td class="tg-baqh">71.08</td> |
|
<td class="tg-baqh">61.33</td> |
|
<td class="tg-baqh">55.56</td> |
|
<td class="tg-baqh">66.18</td> |
|
<td class="tg-baqh">73.61</td> |
|
<td class="tg-baqh">67.98</td> |
|
<td class="tg-baqh">55.68</td> |
|
<td class="tg-baqh">56.33</td> |
|
<td class="tg-baqh">85.94</td> |
|
</tr> |
|
<tr> |
|
<td class="tg-baqh">Hu</td> |
|
<td class="tg-baqh">84.51</td> |
|
<td class="tg-baqh">58.59</td> |
|
<td class="tg-baqh">53.55</td> |
|
<td class="tg-2imo">95.82</td> |
|
<td class="tg-baqh">84.51</td> |
|
<td class="tg-baqh">58.59</td> |
|
<td class="tg-2imo">91.02</td> |
|
<td class="tg-baqh">53.55</td> |
|
<td class="tg-baqh">95.82</td> |
|
</tr> |
|
<tr> |
|
<td class="tg-baqh">Mao</td> |
|
<td class="tg-baqh">95.33</td> |
|
<td class="tg-2imo">82.61</td> |
|
<td class="tg-2imo">81.95</td> |
|
<td class="tg-baqh">85.76</td> |
|
<td class="tg-baqh">95.33</td> |
|
<td class="tg-baqh">82.61</td> |
|
<td class="tg-baqh">83.10</td> |
|
<td class="tg-baqh">81.95</td> |
|
<td class="tg-baqh">85.76</td> |
|
</tr> |
|
<tr> |
|
<td class="tg-baqh">LNG</td> |
|
<td class="tg-2imo">98.51 </td> |
|
<td class="tg-baqh">63.14 </td> |
|
<td class="tg-baqh">58.47 </td> |
|
<td class="tg-baqh">94.71 </td> |
|
<td class="tg-amwm">99.88 </td> |
|
<td class="tg-2imo">91.39 </td> |
|
<td class="tg-baqh">89.74 </td> |
|
<td class="tg-2imo">84.03 </td> |
|
<td class="tg-2imo">98.82 </td> |
|
</tr> |
|
<tr> |
|
<td class="tg-baqh">BEYOND</td> |
|
<td class="tg-amwm">98.89</td> |
|
<td class="tg-amwm">99.28</td> |
|
<td class="tg-amwm">99.16</td> |
|
<td class="tg-amwm">99.27</td> |
|
<td class="tg-2imo">98.89</td> |
|
<td class="tg-amwm">99.28</td> |
|
<td class="tg-amwm">99.20</td> |
|
<td class="tg-amwm">99.16</td> |
|
<td class="tg-amwm">99.27</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
</div> |
|
</div> |
|
</div> |
|
</section> |
|
|
|
|
|
|
|
<section class="section"> |
|
|
|
<div class="container is-max-desktop"> |
|
<h2 class="title is-3">Adaptive Attack</h2> |
|
|
|
<div class="columns is-centered"> |
|
<div class="column container formula"> |
|
<p> |
|
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model |
|
and the detection strategy. For an SSL model with a feature extractor <i>f</i>, a projector <i>h</i>, and a classification head <i>g</i>, |
|
the classification branch can be formulated as <strong>C</strong>= <i>f</i> ° <i>g</i> and the representation branch as <strong>R</strong> = <i>f</i> ° <i>h</i>. |
|
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model. |
|
</div> |
|
</div> |
|
|
|
<div class="columns is-centered"> |
|
<div class="column container-centered"> |
|
<div id="adaptive-loss-formula" class="container"> |
|
<div id="adaptive-loss-formula-list" class="row align-items-center formula-list"> |
|
<a href=".label-loss" class="selected">Label Consistency Loss</a> |
|
<a href=".representation-loss">Representation Similarity Loss</a> |
|
<a href=".total-loss">Total Loss</a> |
|
<div style="clear: both"></div> |
|
</div> |
|
<div class="row align-items-center adaptive-loss-formula-content"> |
|
<span class="formula label-loss formula-content"> |
|
$$ |
|
\displaystyle |
|
Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right) |
|
$$ |
|
</span> |
|
<span class="formula representation-loss formula-content" style="display: none;"> |
|
$$ |
|
\displaystyle |
|
Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta)) |
|
$$ |
|
</span> |
|
<span class="formula total-loss formula-content" style="display: none;"> |
|
$$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$ |
|
</span> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
<div class="columns is-centered"> |
|
<div class="column container adaptive-loss-formula-content"> |
|
<p class="formula label-loss formula-content"> |
|
where k represents the number of generated neighbors, <i>y</i><sub><i>t</i></sub> is the target class, and <strong><i>L</i></strong> is the cross entropy loss function. |
|
</p> |
|
<p class="formula representation-loss formula-content" style="display: none"> |
|
where k represents the number of generated neighbors, and <strong><i>S</i></strong> is the cosine similarity. |
|
</p> |
|
|
|
<p class="formula total-loss formula-content" style="display: none;"> |
|
where <strong><i>L</i></strong><sub>C</sub> indicates classifier's loss function, <i>y</i><sub><i>t</i></sub> is the targeted class, and α refers to a hyperparameter, |
|
which is a trade-off parameter between label consistency and representation similarity.. |
|
</p> |
|
</div> |
|
</div> |
|
|
|
<div class="columns is-centered"> |
|
<div class="column is-full-width"> |
|
<h3 class="title is-4">Performance of BEYOND against Adaptive Attacks</h3> |
|
<div class="content has-text-justified"> |
|
<p> |
|
We can also animate the scene by interpolating the deformation latent codes of two input |
|
frames. Use the slider here to linearly interpolate between the left frame and the right |
|
frame. |
|
</p> |
|
</div> |
|
|
|
<div class="columns is-vcentered interpolation-panel"> |
|
|
|
<div id="adaptive-dataset" class="column is-3 align-items-center" style="width: 30%;"> |
|
<a href="#c10" class="selected">CIFAR-10</a> |
|
|
|
<a href="#imgnet" >ImageNet</a> |
|
<div style="clear: both"></div> |
|
</div> |
|
<div id="c10" class="column interpolation-video-column" style="width: 70%;"> |
|
<div id="interpolation-image-wrapper" > |
|
Loading... |
|
</div> |
|
<input class="slider is-full-width is-large is-info" |
|
id="interpolation-slider" |
|
step="1" min="0" max="6" value="0" type="range"> |
|
<label for="interpolation-slider"><strong>Perturbation Budget Ε</strong> from 2/255 to 128/255</label> |
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div id="imgnet" class="column interpolation-video-column" style="width: 70%; display: none;"> |
|
<div id="interpolation-image-wrapper" > |
|
Loading... |
|
</div> |
|
<input class="slider is-full-width is-large is-info" |
|
id="interpolation-slider" |
|
step="1" min="0" max="6" value="0" type="range"> |
|
<label for="interpolation-slider"><strong>Perturbation Budget Ε</strong> from 2/255 to 128/255</label> |
|
|
|
</div> |
|
|
|
</div> |
|
<br/> |
|
|
|
|
|
</div> |
|
</div> |
|
|
|
|
|
</section> |
|
|
|
|
|
<section class="section" id="BibTeX"> |
|
<div class="container is-max-desktop content"> |
|
<h2 class="title">BibTeX</h2> |
|
<pre><code>@article{he2024beyond, |
|
author = {Zhiyuan, He and Yijun, Yang and Pin-Yu, Chen and Qiang, Xu and Tsung-Yi, Ho}, |
|
title = {Be your own neighborhood: Detecting adversarial example by the neighborhood relations built on self-supervised learning}, |
|
journal = {ICML}, |
|
year = {2024}, |
|
}</code></pre> |
|
</div> |
|
</section> |
|
|
|
|
|
<footer class="footer"> |
|
<div class="container"> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="columns is-centered"> |
|
<div class="column is-8"> |
|
<div class="content"> |
|
<p> |
|
This website is licensed under a <a rel="license" target="_blank" |
|
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative |
|
Commons Attribution-ShareAlike 4.0 International License</a>. |
|
</p> |
|
<p> |
|
This means you are free to borrow the <a target="_blank" |
|
href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website, |
|
we just ask that you link back to this page in the footer. |
|
Please remember to remove the analytics code included in the header of the website which |
|
you do not want on your website. |
|
</p> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
</footer> |
|
|
|
</body> |
|
</html> |
|
|