Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| import plotly.graph_objects as go | |
| import numpy as np | |
| import pandas as pd | |
| import logging | |
| from typing import Optional | |
| import base64 | |
| import html | |
| import aliases | |
| logger = logging.getLogger(__name__) | |
| INFORMAL_TO_FORMAL_NAME_MAP = { | |
| # Short Names | |
| "lit": "Literature Understanding", | |
| "code": "Code & Execution", | |
| "data": "Data Analysis", | |
| "discovery": "End-to-End Discovery", | |
| # Validation Names | |
| "arxivdigestables_validation": "ArxivDIGESTables-Clean", | |
| "ArxivDIGESTables_Clean_validation": "ArxivDIGESTables-Clean", | |
| "sqa_dev": "ScholarQA-CS2", | |
| "ScholarQA_CS2_validation": "ScholarQA-CS2", | |
| "litqa2_validation": "LitQA2-FullText", | |
| "LitQA2_FullText_validation": "LitQA2-FullText", | |
| "paper_finder_validation": "PaperFindingBench", | |
| "PaperFindingBench_validation": "PaperFindingBench", | |
| "paper_finder_litqa2_validation": "LitQA2-FullText-Search", | |
| "LitQA2_FullText_Search_validation": "LitQA2-FullText-Search", | |
| "discoverybench_validation": "DiscoveryBench", | |
| "DiscoveryBench_validation": "DiscoveryBench", | |
| "core_bench_validation": "CORE-Bench-Hard", | |
| "CORE_Bench_Hard_validation": "CORE-Bench-Hard", | |
| "ds1000_validation": "DS-1000", | |
| "DS_1000_validation": "DS-1000", | |
| "e2e_discovery_validation": "E2E-Bench", | |
| "E2E_Bench_validation": "E2E-Bench", | |
| "e2e_discovery_hard_validation": "E2E-Bench-Hard", | |
| "E2E_Bench_Hard_validation": "E2E-Bench-Hard", | |
| "super_validation": "SUPER-Expert", | |
| "SUPER_Expert_validation": "SUPER-Expert", | |
| # Test Names | |
| "paper_finder_test": "PaperFindingBench", | |
| "PaperFindingBench_test": "PaperFindingBench", | |
| "paper_finder_litqa2_test": "LitQA2-FullText-Search", | |
| "LitQA2_FullText_Search_test": "LitQA2-FullText-Search", | |
| "sqa_test": "ScholarQA-CS2", | |
| "ScholarQA_CS2_test": "ScholarQA-CS2", | |
| "arxivdigestables_test": "ArxivDIGESTables-Clean", | |
| "ArxivDIGESTables_Clean_test": "ArxivDIGESTables-Clean", | |
| "litqa2_test": "LitQA2-FullText", | |
| "LitQA2_FullText_test": "LitQA2-FullText", | |
| "discoverybench_test": "DiscoveryBench", | |
| "DiscoveryBench_test": "DiscoveryBench", | |
| "core_bench_test": "CORE-Bench-Hard", | |
| "CORE_Bench_Hard_test": "CORE-Bench-Hard", | |
| "ds1000_test": "DS-1000", | |
| "DS_1000_test": "DS-1000", | |
| "e2e_discovery_test": "E2E-Bench", | |
| "E2E_Bench_test": "E2E-Bench", | |
| "e2e_discovery_hard_test": "E2E-Bench-Hard", | |
| "E2E_Bench_Hard_test": "E2E-Bench-Hard", | |
| "super_test": "SUPER-Expert", | |
| "SUPER_Expert_test": "SUPER-Expert", | |
| } | |
| ORDER_MAP = { | |
| 'Overall_keys': [ | |
| 'lit', | |
| 'code', | |
| 'data', | |
| 'discovery', | |
| ], | |
| 'Literature Understanding': [ | |
| 'PaperFindingBench', | |
| 'LitQA2-FullText-Search', | |
| 'ScholarQA-CS2', | |
| 'LitQA2-FullText', | |
| 'ArxivDIGESTables-Clean' | |
| ], | |
| 'Code & Execution': [ | |
| 'SUPER-Expert', | |
| 'CORE-Bench-Hard', | |
| 'DS-1000' | |
| ], | |
| # Add other keys for 'Data Analysis' and 'Discovery' when/if we add more benchmarks in those categories | |
| } | |
| def _safe_round(value, digits=2): | |
| """Rounds a number if it's a valid float/int, otherwise returns it as is.""" | |
| return round(value, digits) if isinstance(value, (float, int)) and pd.notna(value) else value | |
| def _pretty_column_name(raw_col: str) -> str: | |
| """ | |
| Takes a raw column name from the DataFrame and returns a "pretty" version. | |
| Handles three cases: | |
| 1. Fixed names (e.g., 'User/organization' -> 'Submitter'). | |
| 2. Dynamic names (e.g., 'ds1000_validation score' -> 'DS1000 Validation Score'). | |
| 3. Fallback for any other names. | |
| """ | |
| # Case 1: Handle fixed, special-case mappings first. | |
| fixed_mappings = { | |
| 'id': 'id', | |
| 'Agent': 'Agent', | |
| 'Agent description': 'Agent Description', | |
| 'User/organization': 'Submitter', | |
| 'Submission date': 'Date', | |
| 'Overall': 'Overall Score', | |
| 'Overall cost': 'Overall Cost', | |
| 'Logs': 'Logs', | |
| 'Openness': 'Openness', | |
| 'Agent tooling': 'Agent Tooling', | |
| 'LLM base': 'LLM Base', | |
| 'Source': 'Source', | |
| } | |
| if raw_col in fixed_mappings: | |
| return fixed_mappings[raw_col] | |
| # Case 2: Handle dynamic names by finding the longest matching base name. | |
| # We sort by length (desc) to match 'core_bench_validation' before 'core_bench'. | |
| sorted_base_names = sorted(INFORMAL_TO_FORMAL_NAME_MAP.keys(), key=len, reverse=True) | |
| for base_name in sorted_base_names: | |
| if raw_col.startswith(base_name): | |
| formal_name = INFORMAL_TO_FORMAL_NAME_MAP[base_name] | |
| # Get the metric part (e.g., ' score' or ' cost 95% CI') | |
| metric_part = raw_col[len(base_name):].strip() | |
| # Capitalize the metric part correctly (e.g., 'score' -> 'Score') | |
| pretty_metric = metric_part.capitalize() | |
| return f"{formal_name} {pretty_metric}" | |
| # Case 3: If no specific rule applies, just make it title case. | |
| return raw_col.title() | |
| def create_pretty_tag_map(raw_tag_map: dict, name_map: dict) -> dict: | |
| """ | |
| Converts a tag map with raw names into a tag map with pretty, formal names, | |
| applying a specific, non-alphabetic sort order to the values. | |
| """ | |
| pretty_map = {} | |
| # Helper to get pretty name with a fallback | |
| def get_pretty(raw_name): | |
| return name_map.get(raw_name, raw_name.replace("_", " ")) | |
| key_order = ORDER_MAP.get('Overall_keys', []) | |
| sorted_keys = sorted(raw_tag_map.keys(), key=lambda x: key_order.index(x) if x in key_order else len(key_order)) | |
| for raw_key in sorted_keys: | |
| raw_value_list = raw_tag_map[raw_key] | |
| pretty_key = get_pretty(raw_key) | |
| pretty_value_list = [get_pretty(raw_val) for raw_val in raw_value_list] | |
| # Get the unique values first | |
| unique_values = list(set(pretty_value_list)) | |
| # Get the custom order for the current key. Fall back to an empty list. | |
| custom_order = ORDER_MAP.get(pretty_key, []) | |
| def sort_key(value): | |
| if value in custom_order: | |
| return 0, custom_order.index(value) | |
| else: | |
| return 1, value | |
| pretty_map[pretty_key] = sorted(unique_values, key=sort_key) | |
| print(f"Created pretty tag map: {pretty_map}") | |
| return pretty_map | |
| def transform_raw_dataframe(raw_df: pd.DataFrame) -> pd.DataFrame: | |
| """ | |
| Transforms a raw leaderboard DataFrame into a presentation-ready format. | |
| This function performs two main actions: | |
| 1. Rounds all numeric metric values (columns containing 'score' or 'cost'). | |
| 2. Renames all columns to a "pretty", human-readable format. | |
| Args: | |
| raw_df (pd.DataFrame): The DataFrame with raw data and column names | |
| like 'agent_name', 'overall/score', 'tag/code/cost'. | |
| Returns: | |
| pd.DataFrame: A new DataFrame ready for display. | |
| """ | |
| if not isinstance(raw_df, pd.DataFrame): | |
| raise TypeError("Input 'raw_df' must be a pandas DataFrame.") | |
| df = raw_df.copy() | |
| # Create the mapping for pretty column names | |
| pretty_cols_map = {col: _pretty_column_name(col) for col in df.columns} | |
| # Rename the columns and return the new DataFrame | |
| transformed_df = df.rename(columns=pretty_cols_map) | |
| # Apply safe rounding to all metric columns | |
| for col in transformed_df.columns: | |
| if 'Score' in col or 'Cost' in col: | |
| transformed_df[col] = transformed_df[col].apply(_safe_round) | |
| logger.info("Raw DataFrame transformed: numbers rounded and columns renamed.") | |
| return transformed_df | |
| class DataTransformer: | |
| """ | |
| Visualizes a pre-processed leaderboard DataFrame. | |
| This class takes a "pretty" DataFrame and a tag map, and provides | |
| methods to view filtered versions of the data and generate plots. | |
| """ | |
| def __init__(self, dataframe: pd.DataFrame, tag_map: dict[str, list[str]]): | |
| """ | |
| Initializes the viewer. | |
| Args: | |
| dataframe (pd.DataFrame): The presentation-ready leaderboard data. | |
| tag_map (dict): A map of formal tag names to formal task names. | |
| """ | |
| if not isinstance(dataframe, pd.DataFrame): | |
| raise TypeError("Input 'dataframe' must be a pandas DataFrame.") | |
| if not isinstance(tag_map, dict): | |
| raise TypeError("Input 'tag_map' must be a dictionary.") | |
| self.data = dataframe | |
| self.tag_map = tag_map | |
| logger.info(f"DataTransformer initialized with a DataFrame of shape {self.data.shape}.") | |
| def view( | |
| self, | |
| tag: Optional[str] = "Overall", # Default to "Overall" for clarity | |
| use_plotly: bool = False, | |
| ) -> tuple[pd.DataFrame, dict[str, go.Figure]]: | |
| """ | |
| Generates a filtered view of the DataFrame and a corresponding scatter plot. | |
| """ | |
| if self.data.empty: | |
| logger.warning("No data available to view.") | |
| return self.data, {} | |
| # --- 1. Determine Primary and Group Metrics Based on the Tag --- | |
| if tag is None or tag == "Overall": | |
| primary_metric = "Overall" | |
| group_metrics = list(self.tag_map.keys()) | |
| else: | |
| primary_metric = tag | |
| # For a specific tag, the group is its list of sub-tasks. | |
| group_metrics = self.tag_map.get(tag, []) | |
| # --- 2. Sort the DataFrame by the Primary Score --- | |
| primary_score_col = f"{primary_metric} Score" | |
| df_sorted = self.data | |
| if primary_score_col in self.data.columns: | |
| df_sorted = self.data.sort_values(primary_score_col, ascending=False, na_position='last') | |
| df_view = df_sorted.copy() | |
| # --- 3. Add Columns for Agent Openness and Tooling --- | |
| base_cols = ["id","Agent","Submitter","LLM Base","Source"] | |
| new_cols = ["Openness", "Agent Tooling"] | |
| ending_cols = ["Date", "Logs"] | |
| metrics_to_display = [primary_score_col, f"{primary_metric} Cost"] | |
| for item in group_metrics: | |
| metrics_to_display.append(f"{item} Score") | |
| metrics_to_display.append(f"{item} Cost") | |
| final_cols_ordered = new_cols + base_cols + list(dict.fromkeys(metrics_to_display)) + ending_cols | |
| for col in final_cols_ordered: | |
| if col not in df_view.columns: | |
| df_view[col] = pd.NA | |
| # The final selection will now use the new column structure | |
| df_view = df_view[final_cols_ordered].reset_index(drop=True) | |
| cols = len(final_cols_ordered) | |
| # Calculated and add "Categories Attempted" column | |
| if primary_metric == "Overall": | |
| def calculate_attempted(row): | |
| main_categories = ['Literature Understanding', 'Code & Execution', 'Data Analysis', 'End-to-End Discovery'] | |
| count = sum(1 for category in main_categories if pd.notna(row.get(f"{category} Cost"))) | |
| # Return the formatted string with the correct emoji | |
| if count == 4: | |
| return f"4/4" | |
| if count == 0: | |
| return f"0/4" | |
| return f"{count}/4" | |
| # Apply the function row-wise to create the new column | |
| attempted_column = df_view.apply(calculate_attempted, axis=1) | |
| # Insert the new column at a nice position (e.g., after "Date") | |
| df_view.insert((cols - 2), "Categories Attempted", attempted_column) | |
| else: | |
| total_benchmarks = len(group_metrics) | |
| def calculate_benchmarks_attempted(row): | |
| # Count how many benchmarks in this category have COST data reported | |
| count = sum(1 for benchmark in group_metrics if pd.notna(row.get(f"{benchmark} Cost"))) | |
| if count == total_benchmarks: | |
| return f"{count}/{total_benchmarks} " | |
| elif count == 0: | |
| return f"{count}/{total_benchmarks} " | |
| else: | |
| return f"{count}/{total_benchmarks}" | |
| # Insert the new column, for example, after "Date" | |
| df_view.insert((cols - 2), "Benchmarks Attempted", df_view.apply(calculate_benchmarks_attempted, axis=1)) | |
| # --- 4. Generate the Scatter Plot for the Primary Metric --- | |
| plots: dict[str, go.Figure] = {} | |
| if use_plotly: | |
| primary_cost_col = f"{primary_metric} Cost" | |
| # Check if the primary score and cost columns exist in the FINAL view | |
| if primary_score_col in df_view.columns and primary_cost_col in df_view.columns: | |
| fig = _plot_scatter_plotly( | |
| data=df_view, | |
| x=primary_cost_col, | |
| y=primary_score_col, | |
| agent_col="Agent", | |
| name=primary_metric | |
| ) | |
| # Use a consistent key for easy retrieval later | |
| plots['scatter_plot'] = fig | |
| else: | |
| logger.warning( | |
| f"Skipping plot for '{primary_metric}': score column '{primary_score_col}' " | |
| f"or cost column '{primary_cost_col}' not found." | |
| ) | |
| # Add an empty figure to avoid downstream errors | |
| plots['scatter_plot'] = go.Figure() | |
| return df_view, plots | |
| DEFAULT_Y_COLUMN = "Overall Score" | |
| DUMMY_X_VALUE_FOR_MISSING_COSTS = 0 | |
| def _plot_scatter_plotly( | |
| data: pd.DataFrame, | |
| x: Optional[str], | |
| y: str, | |
| agent_col: str = 'Agent', | |
| name: Optional[str] = None | |
| ) -> go.Figure: | |
| # --- Section 1: Define Mappings --- | |
| # These include aliases for openness categories, | |
| # so multiple names might correspond to the same color. | |
| color_map = { | |
| aliases.CANONICAL_OPENNESS_OPEN_SOURCE_OPEN_WEIGHTS: "deeppink", | |
| aliases.CANONICAL_OPENNESS_OPEN_SOURCE_CLOSED_WEIGHTS: "coral", | |
| aliases.CANONICAL_OPENNESS_CLOSED_API_AVAILABLE: "yellow", | |
| aliases.CANONICAL_OPENNESS_CLOSED_UI_ONLY: "white", | |
| } | |
| for canonical_openness, openness_aliases in aliases.OPENNESS_ALIASES.items(): | |
| for openness_alias in openness_aliases: | |
| color_map[openness_alias] = color_map[canonical_openness] | |
| # Only keep one name per color for the legend. | |
| colors_for_legend = set(aliases.OPENNESS_ALIASES.keys()) | |
| category_order = list(color_map.keys()) | |
| # These include aliases for tool usage categories, | |
| # so multiple names might correspond to the same shape. | |
| shape_map = { | |
| aliases.CANONICAL_TOOL_USAGE_STANDARD: "star", | |
| aliases.CANONICAL_TOOL_USAGE_CUSTOM_INTERFACE: "star-diamond", | |
| aliases.CANONICAL_TOOL_USAGE_FULLY_CUSTOM: "star-triangle-up", | |
| } | |
| for canonical_tool_usage, tool_usages_aliases in aliases.TOOL_USAGE_ALIASES.items(): | |
| for tool_usage_alias in tool_usages_aliases: | |
| shape_map[tool_usage_alias] = shape_map[canonical_tool_usage] | |
| default_shape = 'square' | |
| # Only keep one name per shape for the legend. | |
| shapes_for_legend = set(aliases.TOOL_USAGE_ALIASES.keys()) | |
| x_col_to_use = x | |
| y_col_to_use = y | |
| llm_base = data["LLM Base"] if "LLM Base" in data.columns else "LLM Base" | |
| # --- Section 2: Data Preparation--- | |
| required_cols = [y_col_to_use, agent_col, "Openness", "Agent Tooling"] | |
| if not all(col in data.columns for col in required_cols): | |
| logger.error(f"Missing one or more required columns for plotting: {required_cols}") | |
| return go.Figure() | |
| data_plot = data.copy() | |
| data_plot[y_col_to_use] = pd.to_numeric(data_plot[y_col_to_use], errors='coerce') | |
| x_axis_label = f"Average (mean) cost per problem (USD)" if x else "Cost (Data N/A)" | |
| max_reported_cost = 0 | |
| divider_line_x = 0 | |
| if x and x in data_plot.columns: | |
| data_plot[x_col_to_use] = pd.to_numeric(data_plot[x_col_to_use], errors='coerce') | |
| # --- Separate data into two groups --- | |
| valid_cost_data = data_plot[data_plot[x_col_to_use].notna()].copy() | |
| missing_cost_data = data_plot[data_plot[x_col_to_use].isna()].copy() | |
| if not valid_cost_data.empty: | |
| max_reported_cost = valid_cost_data[x_col_to_use].max() | |
| # ---Calculate where to place the missing data and the divider line --- | |
| divider_line_x = max_reported_cost + (max_reported_cost/10) | |
| new_x_for_missing = max_reported_cost + (max_reported_cost/5) | |
| if not missing_cost_data.empty: | |
| missing_cost_data[x_col_to_use] = new_x_for_missing | |
| # --- Combine the two groups back together --- | |
| data_plot = pd.concat([valid_cost_data, missing_cost_data]) | |
| else: | |
| data_plot = valid_cost_data # No missing data, just use the valid set | |
| else: | |
| # ---Handle the case where ALL costs are missing --- | |
| if not missing_cost_data.empty: | |
| missing_cost_data[x_col_to_use] = 0 | |
| data_plot = missing_cost_data | |
| else: | |
| data_plot = pd.DataFrame() | |
| else: | |
| # Handle case where x column is not provided at all | |
| data_plot[x_col_to_use] = 0 | |
| # Clean data based on all necessary columns | |
| data_plot.dropna(subset=[y_col_to_use, x_col_to_use, "Openness", "Agent Tooling"], inplace=True) | |
| # --- Section 3: Initialize Figure --- | |
| fig = go.Figure() | |
| if data_plot.empty: | |
| logger.warning(f"No valid data to plot after cleaning.") | |
| return fig | |
| # --- Section 4: Calculate and Draw Pareto Frontier --- | |
| if x_col_to_use and y_col_to_use: | |
| sorted_data = data_plot.sort_values(by=[x_col_to_use, y_col_to_use], ascending=[True, False]) | |
| frontier_points = [] | |
| max_score_so_far = float('-inf') | |
| for _, row in sorted_data.iterrows(): | |
| score = row[y_col_to_use] | |
| if score >= max_score_so_far: | |
| frontier_points.append({'x': row[x_col_to_use], 'y': score}) | |
| max_score_so_far = score | |
| if frontier_points: | |
| frontier_df = pd.DataFrame(frontier_points) | |
| fig.add_trace(go.Scatter( | |
| x=frontier_df['x'], | |
| y=frontier_df['y'], | |
| mode='lines', | |
| name='Efficiency Frontier', | |
| showlegend=False, | |
| line=dict(color='#0FCB8C', width=2, dash='dash'), | |
| hoverinfo='skip' | |
| )) | |
| # --- Section 5: Prepare for Marker Plotting --- | |
| def format_hover_text(row, agent_col, x_axis_label, x_col, y_col): | |
| """ | |
| Builds the complete HTML string for the plot's hover tooltip. | |
| Formats the 'LLM Base' column as a bulleted list if multiple. | |
| """ | |
| h_pad = " " | |
| parts = ["<br>"] | |
| parts.append(f"{h_pad}<b>{row[agent_col]}</b>{h_pad}<br>") | |
| parts.append(f"{h_pad}Score: <b>{row[y_col]:.2f}</b>{h_pad}<br>") | |
| parts.append(f"{h_pad}{x_axis_label}: <b>${row[x_col]:.2f}</b>{h_pad}<br>") | |
| parts.append(f"{h_pad}Openness: <b>{row['Openness']}</b>{h_pad}<br>") | |
| parts.append(f"{h_pad}Tooling: <b>{row['Agent Tooling']}</b>{h_pad}") | |
| # Add extra vertical space (line spacing) before the next section | |
| parts.append("<br>") | |
| # Clean and format LLM Base column | |
| llm_base_value = row['LLM Base'] | |
| llm_base_value = clean_llm_base_list(llm_base_value) | |
| if isinstance(llm_base_value, list) and llm_base_value: | |
| parts.append(f"{h_pad}LLM Base:{h_pad}<br>") | |
| # Create a list of padded bullet points | |
| list_items = [f"{h_pad} • <b>{item}</b>{h_pad}" for item in llm_base_value] | |
| # Join them with line breaks | |
| parts.append('<br>'.join(list_items)) | |
| else: | |
| # Handle the non-list case with padding | |
| parts.append(f"{h_pad}LLM Base: <b>{llm_base_value}</b>{h_pad}") | |
| # Add a final line break for bottom "padding" | |
| parts.append("<br>") | |
| # Join all the parts together into the final HTML string | |
| return ''.join(parts) | |
| # Pre-generate hover text and shapes for each point | |
| data_plot['hover_text'] = data_plot.apply( | |
| lambda row: format_hover_text( | |
| row, | |
| agent_col=agent_col, | |
| x_axis_label=x_axis_label, | |
| x_col=x_col_to_use, | |
| y_col=y_col_to_use | |
| ), | |
| axis=1 | |
| ) | |
| data_plot['shape_symbol'] = data_plot['Agent Tooling'].map(shape_map).fillna(default_shape) | |
| # --- Section 6: Plot Markers by "Openness" Category --- | |
| for category in category_order: | |
| group = data_plot[data_plot['Openness'] == category] | |
| if group.empty: | |
| continue | |
| fig.add_trace(go.Scatter( | |
| x=group[x_col_to_use], | |
| y=group[y_col_to_use], | |
| mode='markers', | |
| name=category, | |
| showlegend=False, | |
| text=group['hover_text'], | |
| hoverinfo='text', | |
| marker=dict( | |
| color=color_map.get(category, 'black'), | |
| symbol=group['shape_symbol'], | |
| size=15, | |
| opacity=0.8, | |
| line=dict(width=1, color='deeppink') | |
| ) | |
| )) | |
| # --- Section 8: Configure Layout --- | |
| xaxis_config = dict(title=x_axis_label, rangemode="tozero") | |
| if divider_line_x > 0: | |
| fig.add_vline( | |
| x=divider_line_x, | |
| line_width=2, | |
| line_dash="dash", | |
| line_color="grey", | |
| annotation_text="Missing Cost Data", | |
| annotation_position="top right" | |
| ) | |
| # ---Adjust x-axis range to make room for the new points --- | |
| xaxis_config['range'] = [0, (max_reported_cost + (max_reported_cost / 4))] | |
| logo_data_uri = svg_to_data_uri("assets/just-icon.svg") | |
| fig.update_layout( | |
| template="plotly_white", | |
| title=f"AstaBench {name} Leaderboard", | |
| xaxis=xaxis_config, # Use the updated config | |
| yaxis=dict(title="Average (mean) score", rangemode="tozero"), | |
| legend=dict( | |
| bgcolor='#FAF2E9', | |
| ), | |
| height=572, | |
| hoverlabel=dict( | |
| bgcolor="#105257", | |
| font_size=12, | |
| font_family="Manrope", | |
| font_color="#d3dedc", | |
| ), | |
| ) | |
| fig.add_layout_image( | |
| dict( | |
| source=logo_data_uri, | |
| xref="x domain", yref="y domain", | |
| x=1.1, y=1.1, | |
| sizex=0.2, sizey=0.2, | |
| xanchor="left", | |
| yanchor="bottom", | |
| layer="above", | |
| ), | |
| ) | |
| return fig | |
| def format_cost_column(df: pd.DataFrame, cost_col_name: str) -> pd.DataFrame: | |
| """ | |
| Applies custom formatting to a cost column based on its corresponding score column. | |
| - If cost is not null, it remains unchanged. | |
| - If cost is null but score is not, it becomes "Missing Cost". | |
| - If both cost and score are null, it becomes "Not Attempted". | |
| Args: | |
| df: The DataFrame to modify. | |
| cost_col_name: The name of the cost column to format (e.g., "Overall Cost"). | |
| Returns: | |
| The DataFrame with the formatted cost column. | |
| """ | |
| # Find the corresponding score column by replacing "Cost" with "Score" | |
| score_col_name = cost_col_name.replace("Cost", "Score") | |
| # Ensure the score column actually exists to avoid errors | |
| if score_col_name not in df.columns: | |
| return df # Return the DataFrame unmodified if there's no matching score | |
| def apply_formatting_logic(row): | |
| cost_value = row[cost_col_name] | |
| score_value = row[score_col_name] | |
| status_color = "#ec4899" | |
| if pd.notna(cost_value) and isinstance(cost_value, (int, float)): | |
| return f"${cost_value:.2f}" | |
| elif pd.notna(score_value): | |
| return f'<span style="color: {status_color};">Missing</span>' # Score exists, but cost is missing | |
| else: | |
| return f'<span style="color: {status_color};">Not Submitted</span>' # Neither score nor cost exists | |
| # Apply the logic to the specified cost column and update the DataFrame | |
| df[cost_col_name] = df.apply(apply_formatting_logic, axis=1) | |
| return df | |
| def format_score_column(df: pd.DataFrame, score_col_name: str) -> pd.DataFrame: | |
| """ | |
| Applies custom formatting to a score column for display. | |
| - If a score is 0 or NaN, it's displayed as a colored "0". | |
| - Other scores are formatted to two decimal places. | |
| """ | |
| status_color = "#ec4899" # The same color as your other status text | |
| # First, fill any NaN values with 0 so we only have one case to handle. | |
| # We must use reassignment to avoid the SettingWithCopyWarning. | |
| df[score_col_name] = df[score_col_name].fillna(0) | |
| def apply_formatting(score_value): | |
| # Now, we just check if the value is 0. | |
| if score_value == 0: | |
| return f'<span style="color: {status_color};">0.0</span>' | |
| # For all other numbers, format them for consistency. | |
| if isinstance(score_value, (int, float)): | |
| return f"{score_value:.2f}" | |
| # Fallback for any unexpected non-numeric data | |
| return score_value | |
| # Apply the formatting and return the updated DataFrame | |
| return df.assign(**{score_col_name: df[score_col_name].apply(apply_formatting)}) | |
| def get_pareto_df(data): | |
| cost_cols = [c for c in data.columns if 'Cost' in c] | |
| score_cols = [c for c in data.columns if 'Score' in c] | |
| if not cost_cols or not score_cols: | |
| return pd.DataFrame() | |
| x_col, y_col = cost_cols[0], score_cols[0] | |
| frontier_data = data.dropna(subset=[x_col, y_col]).copy() | |
| frontier_data[y_col] = pd.to_numeric(frontier_data[y_col], errors='coerce') | |
| frontier_data[x_col] = pd.to_numeric(frontier_data[x_col], errors='coerce') | |
| frontier_data.dropna(subset=[x_col, y_col], inplace=True) | |
| if frontier_data.empty: | |
| return pd.DataFrame() | |
| frontier_data = frontier_data.sort_values(by=[x_col, y_col], ascending=[True, False]) | |
| pareto_points = [] | |
| max_score_at_cost = -np.inf | |
| for _, row in frontier_data.iterrows(): | |
| if row[y_col] >= max_score_at_cost: | |
| pareto_points.append(row) | |
| max_score_at_cost = row[y_col] | |
| return pd.DataFrame(pareto_points) | |
| def svg_to_data_uri(path: str) -> str: | |
| """Reads an SVG file and encodes it as a Data URI for Plotly.""" | |
| try: | |
| with open(path, "rb") as f: | |
| encoded_string = base64.b64encode(f.read()).decode() | |
| return f"data:image/svg+xml;base64,{encoded_string}" | |
| except FileNotFoundError: | |
| logger.warning(f"SVG file not found at: {path}") | |
| return None | |
| def clean_llm_base_list(model_list): | |
| """ | |
| Cleans a list of model strings by keeping only the text after the last '/'. | |
| For example: "models/gemini-2.5-flash-preview-05-20" becomes "gemini-2.5-flash-preview-05-20". | |
| """ | |
| # Return the original value if it's not a list, to avoid errors. | |
| if not isinstance(model_list, list): | |
| return model_list | |
| # Use a list comprehension for a clean and efficient transformation. | |
| return [str(item).split('/')[-1] for item in model_list] | |
