Spaces:
Running
Running
inti commit
Browse files- .gitignore +6 -0
- README.md +53 -6
- ZeroEval-main/result_dirs/zebra-grid.summary.json +321 -0
- __init__.py +0 -0
- _about_us.md +16 -0
- _header.md +5 -0
- _metrics.md +1 -0
- app.py +164 -0
- constants.py +283 -0
- data_utils.py +46 -0
- init.py +0 -0
- model_info.json +65 -0
- requirements.txt +4 -0
- style.css +27 -0
- themes.py +45 -0
- update_data.sh +40 -0
- update_table.sh +0 -0
- utils_display.py +34 -0
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
*.pyc
|
3 |
+
ZeroEval-main/.DS_Store
|
4 |
+
ZeroEval-main/result_dirs/.DS_Store
|
5 |
+
ZeroEval-main/result_dirs/zebra-grid/.DS_Store
|
6 |
+
.DS_Store
|
README.md
CHANGED
@@ -1,13 +1,60 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Zebra Logic Bench
|
3 |
+
emoji: 🦓
|
4 |
colorFrom: blue
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
fullWidth: true
|
11 |
+
hf_oauth: true
|
12 |
+
api: false
|
13 |
+
tags:
|
14 |
+
- leaderboard
|
15 |
+
datasets:
|
16 |
+
- allenai/ZebraLogicBench
|
17 |
+
- allenai/ZebraLogicBench-private
|
18 |
+
models:
|
19 |
+
- Qwen/Qwen2-72B-Instruct
|
20 |
+
- Qwen/Qwen1.5-72B-Chat
|
21 |
+
- Qwen/Qwen1.5-7B-Chat
|
22 |
+
- meta-llama/Meta-Llama-3-8B-Instruct
|
23 |
+
- meta-llama/Meta-Llama-3-70B-Instruct
|
24 |
+
- meta-llama/Llama-2-13b-chat-hf
|
25 |
+
- meta-llama/Llama-2-70b-chat-hf
|
26 |
+
- meta-llama/Llama-2-7b-chat-hf
|
27 |
+
- mistralai/Mistral-7B-Instruct-v0.1
|
28 |
+
- mistralai/Mistral-7B-Instruct-v0.2
|
29 |
+
- mistralai/Mixtral-8x7B-Instruct-v0.1
|
30 |
+
- microsoft/Phi-3-medium-128k-instruct
|
31 |
+
- microsoft/Phi-3-mini-128k-instruct
|
32 |
+
- NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
|
33 |
+
- NousResearch/Hermes-2-Theta-Llama-3-8B
|
34 |
+
- 01-ai/Yi-1.5-34B-Chat
|
35 |
+
- 01-ai/Yi-1.5-9B-Chat
|
36 |
+
- 01-ai/Yi-1.5-6B-Chat
|
37 |
+
- google/gemma-7b-it
|
38 |
+
- google/gemma-2b-it
|
39 |
+
- allenai/tulu-2-dpo-70b
|
40 |
+
- HuggingFaceH4/zephyr-7b-beta
|
41 |
+
- Nexusflow/Starling-LM-7B-beta
|
42 |
+
- databricks/dbrx-instruct
|
43 |
+
- princeton-nlp/Llama-3-Instruct-8B-SimPO
|
44 |
+
- chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
|
45 |
+
- chujiezheng/Starling-LM-7B-beta-ExPO
|
46 |
+
- ZhangShenao/SELM-Zephyr-7B-iter-3
|
47 |
+
- deepseek-ai/DeepSeek-V2-Chat
|
48 |
+
- m-a-p/neo_7b_instruct_v0.1
|
49 |
+
- 01-ai/Yi-34B-chat
|
50 |
+
- lmsys/vicuna-13b-v1.5
|
51 |
+
- HuggingFaceH4/zephyr-7b-gemma-v0.1
|
52 |
+
- deepseek-ai/DeepSeek-Coder-V2
|
53 |
+
- THUDM/glm-4-9b-chat
|
54 |
+
- chujiezheng/neo_7b_instruct_v0.1-ExPO
|
55 |
+
- ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3
|
56 |
---
|
57 |
|
58 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
59 |
+
|
60 |
+
Paper: arxiv.org/abs/2406.04770
|
ZeroEval-main/result_dirs/zebra-grid.summary.json
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"Model": "claude-3-5-sonnet-20240620",
|
4 |
+
"Mode": "greedy",
|
5 |
+
"Puzzle Acc": "33.40",
|
6 |
+
"Cell Acc": "54.34",
|
7 |
+
"No answer": "0.00",
|
8 |
+
"Easy Puzzle Acc": "87.50",
|
9 |
+
"Hard Puzzle Acc": "12.36",
|
10 |
+
"Total Puzzles": 1000,
|
11 |
+
"Reason Lens": "1141.94"
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"Model": "claude-3-5-sonnet-20240620",
|
15 |
+
"Mode": "sampling",
|
16 |
+
"Puzzle Acc": "33.40",
|
17 |
+
"Cell Acc": "53.01",
|
18 |
+
"No answer": "0.10",
|
19 |
+
"Easy Puzzle Acc": "88.21",
|
20 |
+
"Hard Puzzle Acc": "12.08",
|
21 |
+
"Total Puzzles": 1000,
|
22 |
+
"Reason Lens": "1153.83"
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"Model": "gpt-4o-2024-05-13",
|
26 |
+
"Mode": "sampling",
|
27 |
+
"Puzzle Acc": "30.80",
|
28 |
+
"Cell Acc": "46.19",
|
29 |
+
"No answer": "6.60",
|
30 |
+
"Easy Puzzle Acc": "81.07",
|
31 |
+
"Hard Puzzle Acc": "11.25",
|
32 |
+
"Total Puzzles": 1000,
|
33 |
+
"Reason Lens": "1549.74"
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"Model": "gpt-4-turbo-2024-04-09",
|
37 |
+
"Mode": "greedy",
|
38 |
+
"Puzzle Acc": "28.40",
|
39 |
+
"Cell Acc": "47.90",
|
40 |
+
"No answer": "0.10",
|
41 |
+
"Easy Puzzle Acc": "80.71",
|
42 |
+
"Hard Puzzle Acc": "8.06",
|
43 |
+
"Total Puzzles": 1000,
|
44 |
+
"Reason Lens": "1148.46"
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"Model": "gpt-4o-2024-05-13",
|
48 |
+
"Mode": "greedy",
|
49 |
+
"Puzzle Acc": "28.20",
|
50 |
+
"Cell Acc": "38.72",
|
51 |
+
"No answer": "19.30",
|
52 |
+
"Easy Puzzle Acc": "77.86",
|
53 |
+
"Hard Puzzle Acc": "8.89",
|
54 |
+
"Total Puzzles": 1000,
|
55 |
+
"Reason Lens": "1643.51"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"Model": "gpt-4-0314",
|
59 |
+
"Mode": "greedy",
|
60 |
+
"Puzzle Acc": "27.10",
|
61 |
+
"Cell Acc": "47.43",
|
62 |
+
"No answer": "0.20",
|
63 |
+
"Easy Puzzle Acc": "77.14",
|
64 |
+
"Hard Puzzle Acc": "7.64",
|
65 |
+
"Total Puzzles": 1000,
|
66 |
+
"Reason Lens": "1203.17"
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"Model": "claude-3-opus-20240229",
|
70 |
+
"Mode": "greedy",
|
71 |
+
"Puzzle Acc": "27.00",
|
72 |
+
"Cell Acc": "48.91",
|
73 |
+
"No answer": "0.00",
|
74 |
+
"Easy Puzzle Acc": "78.21",
|
75 |
+
"Hard Puzzle Acc": "7.08",
|
76 |
+
"Total Puzzles": 1000,
|
77 |
+
"Reason Lens": "855.72"
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"Model": "gpt-4-turbo-2024-04-09",
|
81 |
+
"Mode": "sampling",
|
82 |
+
"Puzzle Acc": "26.40",
|
83 |
+
"Cell Acc": "47.93",
|
84 |
+
"No answer": "0.00",
|
85 |
+
"Easy Puzzle Acc": "74.29",
|
86 |
+
"Hard Puzzle Acc": "7.78",
|
87 |
+
"Total Puzzles": 1000,
|
88 |
+
"Reason Lens": "1165.90"
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"Model": "deepseek-chat",
|
92 |
+
"Mode": "greedy",
|
93 |
+
"Puzzle Acc": "22.70",
|
94 |
+
"Cell Acc": "42.46",
|
95 |
+
"No answer": "5.20",
|
96 |
+
"Easy Puzzle Acc": "68.57",
|
97 |
+
"Hard Puzzle Acc": "4.86",
|
98 |
+
"Total Puzzles": 1000,
|
99 |
+
"Reason Lens": "1260.23"
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"Model": "Qwen2-72B-Instruct",
|
103 |
+
"Mode": "greedy",
|
104 |
+
"Puzzle Acc": "21.40",
|
105 |
+
"Cell Acc": "38.32",
|
106 |
+
"No answer": "10.20",
|
107 |
+
"Easy Puzzle Acc": "63.93",
|
108 |
+
"Hard Puzzle Acc": "4.86",
|
109 |
+
"Total Puzzles": 1000,
|
110 |
+
"Reason Lens": "1813.82"
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"Model": "deepseek-coder",
|
114 |
+
"Mode": "greedy",
|
115 |
+
"Puzzle Acc": "21.10",
|
116 |
+
"Cell Acc": "41.58",
|
117 |
+
"No answer": "4.90",
|
118 |
+
"Easy Puzzle Acc": "64.64",
|
119 |
+
"Hard Puzzle Acc": "4.17",
|
120 |
+
"Total Puzzles": 1000,
|
121 |
+
"Reason Lens": "1324.55"
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"Model": "gemini-1.5-pro",
|
125 |
+
"Mode": "sampling",
|
126 |
+
"Puzzle Acc": "19.70",
|
127 |
+
"Cell Acc": "45.24",
|
128 |
+
"No answer": "0.40",
|
129 |
+
"Easy Puzzle Acc": "60.00",
|
130 |
+
"Hard Puzzle Acc": "4.03",
|
131 |
+
"Total Puzzles": 1000,
|
132 |
+
"Reason Lens": "1356.77"
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"Model": "gemini-1.5-flash",
|
136 |
+
"Mode": "greedy",
|
137 |
+
"Puzzle Acc": "19.40",
|
138 |
+
"Cell Acc": "31.77",
|
139 |
+
"No answer": "22.70",
|
140 |
+
"Easy Puzzle Acc": "59.29",
|
141 |
+
"Hard Puzzle Acc": "3.89",
|
142 |
+
"Total Puzzles": 1000,
|
143 |
+
"Reason Lens": "1538.18"
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"Model": "gemini-1.5-pro",
|
147 |
+
"Mode": "greedy",
|
148 |
+
"Puzzle Acc": "19.40",
|
149 |
+
"Cell Acc": "44.59",
|
150 |
+
"No answer": "0.80",
|
151 |
+
"Easy Puzzle Acc": "55.71",
|
152 |
+
"Hard Puzzle Acc": "5.28",
|
153 |
+
"Total Puzzles": 1000,
|
154 |
+
"Reason Lens": "1336.17"
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"Model": "yi-large-preview",
|
158 |
+
"Mode": "greedy",
|
159 |
+
"Puzzle Acc": "18.90",
|
160 |
+
"Cell Acc": "42.61",
|
161 |
+
"No answer": "1.40",
|
162 |
+
"Easy Puzzle Acc": "58.93",
|
163 |
+
"Hard Puzzle Acc": "3.33",
|
164 |
+
"Total Puzzles": 1000,
|
165 |
+
"Reason Lens": "833.36"
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"Model": "yi-large",
|
169 |
+
"Mode": "greedy",
|
170 |
+
"Puzzle Acc": "18.80",
|
171 |
+
"Cell Acc": "39.83",
|
172 |
+
"No answer": "1.80",
|
173 |
+
"Easy Puzzle Acc": "58.21",
|
174 |
+
"Hard Puzzle Acc": "3.47",
|
175 |
+
"Total Puzzles": 1000,
|
176 |
+
"Reason Lens": "757.01"
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"Model": "claude-3-sonnet-20240229",
|
180 |
+
"Mode": "greedy",
|
181 |
+
"Puzzle Acc": "18.70",
|
182 |
+
"Cell Acc": "43.66",
|
183 |
+
"No answer": "0.00",
|
184 |
+
"Easy Puzzle Acc": "58.93",
|
185 |
+
"Hard Puzzle Acc": "3.06",
|
186 |
+
"Total Puzzles": 1000,
|
187 |
+
"Reason Lens": "1095.37"
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"Model": "Qwen2-72B-Instruct",
|
191 |
+
"Mode": "sampling",
|
192 |
+
"Puzzle Acc": "18.70",
|
193 |
+
"Cell Acc": "40.57",
|
194 |
+
"No answer": "3.20",
|
195 |
+
"Easy Puzzle Acc": "57.50",
|
196 |
+
"Hard Puzzle Acc": "3.61",
|
197 |
+
"Total Puzzles": 1000,
|
198 |
+
"Reason Lens": "1894.72"
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"Model": "gemini-1.5-flash",
|
202 |
+
"Mode": "sampling",
|
203 |
+
"Puzzle Acc": "18.40",
|
204 |
+
"Cell Acc": "36.03",
|
205 |
+
"No answer": "12.80",
|
206 |
+
"Easy Puzzle Acc": "57.86",
|
207 |
+
"Hard Puzzle Acc": "3.06",
|
208 |
+
"Total Puzzles": 1000,
|
209 |
+
"Reason Lens": "1713.03"
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"Model": "Meta-Llama-3-70B-Instruct",
|
213 |
+
"Mode": "greedy",
|
214 |
+
"Puzzle Acc": "16.80",
|
215 |
+
"Cell Acc": "42.31",
|
216 |
+
"No answer": "0.20",
|
217 |
+
"Easy Puzzle Acc": "52.86",
|
218 |
+
"Hard Puzzle Acc": "2.78",
|
219 |
+
"Total Puzzles": 1000,
|
220 |
+
"Reason Lens": "809.95"
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"Model": "gemma-2-27b-it@nvidia",
|
224 |
+
"Mode": "greedy",
|
225 |
+
"Puzzle Acc": "16.30",
|
226 |
+
"Cell Acc": "41.18",
|
227 |
+
"No answer": "1.10",
|
228 |
+
"Easy Puzzle Acc": "50.71",
|
229 |
+
"Hard Puzzle Acc": "2.92",
|
230 |
+
"Total Puzzles": 1000,
|
231 |
+
"Reason Lens": "1014.56"
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"Model": "claude-3-haiku-20240307",
|
235 |
+
"Mode": "greedy",
|
236 |
+
"Puzzle Acc": "14.30",
|
237 |
+
"Cell Acc": "37.87",
|
238 |
+
"No answer": "0.10",
|
239 |
+
"Easy Puzzle Acc": "47.86",
|
240 |
+
"Hard Puzzle Acc": "1.25",
|
241 |
+
"Total Puzzles": 1000,
|
242 |
+
"Reason Lens": "1015.06"
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"Model": "reka-core-20240501",
|
246 |
+
"Mode": "greedy",
|
247 |
+
"Puzzle Acc": "13.00",
|
248 |
+
"Cell Acc": "33.88",
|
249 |
+
"No answer": "4.00",
|
250 |
+
"Easy Puzzle Acc": "43.21",
|
251 |
+
"Hard Puzzle Acc": "1.25",
|
252 |
+
"Total Puzzles": 1000,
|
253 |
+
"Reason Lens": "1078.29"
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"Model": "gemma-2-9b-it",
|
257 |
+
"Mode": "greedy",
|
258 |
+
"Puzzle Acc": "12.90",
|
259 |
+
"Cell Acc": "37.07",
|
260 |
+
"No answer": "0.50",
|
261 |
+
"Easy Puzzle Acc": "42.14",
|
262 |
+
"Hard Puzzle Acc": "1.53",
|
263 |
+
"Total Puzzles": 1000,
|
264 |
+
"Reason Lens": "859.14"
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"Model": "gemma-2-9b-it@nvidia",
|
268 |
+
"Mode": "greedy",
|
269 |
+
"Puzzle Acc": "12.80",
|
270 |
+
"Cell Acc": "36.79",
|
271 |
+
"No answer": "0.00",
|
272 |
+
"Easy Puzzle Acc": "41.79",
|
273 |
+
"Hard Puzzle Acc": "1.53",
|
274 |
+
"Total Puzzles": 1000,
|
275 |
+
"Reason Lens": "849.84"
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"Model": "Meta-Llama-3-8B-Instruct",
|
279 |
+
"Mode": "greedy",
|
280 |
+
"Puzzle Acc": "11.90",
|
281 |
+
"Cell Acc": "23.70",
|
282 |
+
"No answer": "29.20",
|
283 |
+
"Easy Puzzle Acc": "40.71",
|
284 |
+
"Hard Puzzle Acc": "0.69",
|
285 |
+
"Total Puzzles": 1000,
|
286 |
+
"Reason Lens": "1216.40"
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"Model": "gpt-3.5-turbo-0125",
|
290 |
+
"Mode": "greedy",
|
291 |
+
"Puzzle Acc": "10.10",
|
292 |
+
"Cell Acc": "33.06",
|
293 |
+
"No answer": "0.10",
|
294 |
+
"Easy Puzzle Acc": "33.57",
|
295 |
+
"Hard Puzzle Acc": "0.97",
|
296 |
+
"Total Puzzles": 1000,
|
297 |
+
"Reason Lens": "820.66"
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"Model": "reka-flash-20240226",
|
301 |
+
"Mode": "greedy",
|
302 |
+
"Puzzle Acc": "9.30",
|
303 |
+
"Cell Acc": "25.67",
|
304 |
+
"No answer": "18.70",
|
305 |
+
"Easy Puzzle Acc": "30.71",
|
306 |
+
"Hard Puzzle Acc": "0.97",
|
307 |
+
"Total Puzzles": 1000,
|
308 |
+
"Reason Lens": "1074.80"
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"Model": "Qwen2-7B-Instruct",
|
312 |
+
"Mode": "greedy",
|
313 |
+
"Puzzle Acc": "8.40",
|
314 |
+
"Cell Acc": "22.06",
|
315 |
+
"No answer": "24.40",
|
316 |
+
"Easy Puzzle Acc": "29.29",
|
317 |
+
"Hard Puzzle Acc": "0.28",
|
318 |
+
"Total Puzzles": 1000,
|
319 |
+
"Reason Lens": "1473.23"
|
320 |
+
}
|
321 |
+
]
|
__init__.py
ADDED
File without changes
|
_about_us.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## About Us
|
2 |
+
|
3 |
+
### Team
|
4 |
+
|
5 |
+
We are from [AllenAI](https://allenai.org/) (AI2), a non-profit research organization.
|
6 |
+
|
7 |
+
[Bill Yuchen Lin](https://yuchenlin.xyz/), [Ronan Le Bras](https://rlebras.github.io/), and [Yejin Choi](https://homes.cs.washington.edu/~yejin/).
|
8 |
+
|
9 |
+
|
10 |
+
### Contact
|
11 |
+
|
12 |
+
Please contact us in the following ways:
|
13 |
+
- Github Issues/PRs for adding a new model: [https://github.com/allenai/WildBench](https://github.com/allenai/WildBench)
|
14 |
+
- HF Discussions for general questions about the leaderboard: [https://huggingface.co/spaces/allenai/WildBench/discussions](https://huggingface.co/spaces/allenai/WildBench/discussions)
|
15 |
+
- Other questions: Please contact Yuchen with email: yuchenl[at]allenai[dot]org
|
16 |
+
|
_header.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<br/>
|
2 |
+
|
3 |
+
# 🦁 WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
|
4 |
+
[📑 Paper](https://allenai.github.io/WildBench/WildBench_paper.pdf) | [💻 GitHub](https://github.com/allenai/WildBench) | [🤗 HuggingFace](https://huggingface.co/collections/allenai/wildbench-65e8f2fa9c1260a85a933627) | [🐦 X](https://x.com/billyuchenlin/status/1795746137875554531) | [💬 Discussion](https://huggingface.co/spaces/allenai/WildBench/discussions) | ⚙️ **Version**: **V2** | **# Models**: {model_num} | Updated: **{LAST_UPDATED}**
|
5 |
+
|
_metrics.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
##
|
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
|
2 |
+
import ast
|
3 |
+
import argparse
|
4 |
+
import glob
|
5 |
+
import pickle
|
6 |
+
import plotly
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import gradio as gr
|
11 |
+
import pandas as pd
|
12 |
+
from pathlib import Path
|
13 |
+
import json
|
14 |
+
from constants import *
|
15 |
+
from datetime import datetime, timezone
|
16 |
+
# from datasets import Dataset, load_dataset, concatenate_datasets
|
17 |
+
import os, uuid
|
18 |
+
from utils_display import model_info
|
19 |
+
from constants import column_names, LEADERBOARD_REMARKS, DEFAULT_K, LEADERBOARD_REMARKS_MAIN
|
20 |
+
import pytz
|
21 |
+
from data_utils import post_processing
|
22 |
+
|
23 |
+
# get the last updated time from the elo_ranks.all.jsonl file
|
24 |
+
LAST_UPDATED = None
|
25 |
+
# with open("_intro.md", "r") as f:
|
26 |
+
# INTRO_MD = f.read()
|
27 |
+
INTRO_MD = ""
|
28 |
+
with open("_about_us.md", "r") as f:
|
29 |
+
ABOUT_MD = f.read()
|
30 |
+
|
31 |
+
with open("_header.md", "r") as f:
|
32 |
+
HEADER_MD = f.read()
|
33 |
+
|
34 |
+
with open("_metrics.md", "r") as f:
|
35 |
+
METRICS_MD = f.read()
|
36 |
+
|
37 |
+
original_df = None
|
38 |
+
# available_models = [] # to be filled in later
|
39 |
+
available_models = list(model_info.keys())
|
40 |
+
|
41 |
+
def _tab_leaderboard():
|
42 |
+
global original_df, available_models, gpt4t_dfs, haiku_dfs, llama_dfs, score_df
|
43 |
+
with gr.TabItem("📊 Main", elem_id="od-benchmark-tab-table-ablation", id=0, elem_classes="subtab"):
|
44 |
+
default_main_df = original_df.copy()
|
45 |
+
default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
|
46 |
+
default_main_df_no_task = default_main_df.copy()
|
47 |
+
# default_main_df_no_task = hide_task_column(default_main_df)
|
48 |
+
# default_main_df_no_task = rerank(default_main_df_no_task, rank_column=WB_ELO_COLUMN)
|
49 |
+
# default_main_df_no_task = rerank(default_main_df_no_task, rank_column=HYBRID_AVG_COLUMN)
|
50 |
+
with gr.Row():
|
51 |
+
# with gr.Column(scale=5):
|
52 |
+
# gr.Markdown(LEADERBOARD_REMARKS_MAIN, elem_classes="markdown-text-small top-left-LP")
|
53 |
+
# with gr.Row():
|
54 |
+
# with gr.Column(scale=2):
|
55 |
+
# md = gr.Markdown(" ### 👀 More presentation options ⬇️", elem_classes="markdown-text")
|
56 |
+
|
57 |
+
# with gr.Column(scale=3):
|
58 |
+
# with gr.Column(scale=2):
|
59 |
+
# gr.Markdown(f"""**__🪧 Default options:__** K={DEFAULT_K}; Hybrid-Macro; for best corr w/ LMSYS Elo.""", elem_classes="markdown-text")
|
60 |
+
|
61 |
+
|
62 |
+
# gr.Markdown(LENGTH_MARGIN_DESC_MD, elem_classes="markdown-text-tiny no_margin")
|
63 |
+
with gr.Column(scale=5):
|
64 |
+
with gr.Accordion("💬 Metric explanations", open=False, elem_classes="accordion-label"):
|
65 |
+
gr.Markdown(LEADERBOARD_REMARKS_MAIN, elem_classes="markdown-text-small no_margin")
|
66 |
+
rank_column_radio = gr.Radio(["🆚+💯 Hybrid", "🆚 Reward-Mix (Pairwise)", "💯 Score (Individual)", "🌟 WB Elo (beta)" ], show_label=False, elem_id="rank-column-radio",
|
67 |
+
value="🌟 WB Elo (beta)"
|
68 |
+
# value="🆚+💯 Hybrid"
|
69 |
+
)
|
70 |
+
with gr.Column(scale=2):
|
71 |
+
with gr.Row():
|
72 |
+
checkbox_show_task_categorized = gr.Checkbox(label="🆚 by Task Type", elem_id="show-task-categorized", value=False)
|
73 |
+
show_open_source_model_only = gr.Checkbox(label="🔑 Open Models", elem_id="show-open-source-models", value=False)
|
74 |
+
# with gr.Row():
|
75 |
+
# with gr.Column(scale=2):
|
76 |
+
|
77 |
+
leaderboard_table = gr.components.Dataframe(
|
78 |
+
value=default_main_df_no_task,
|
79 |
+
datatype= ["number", "markdown", "markdown", "number"],
|
80 |
+
# max_rows=None,
|
81 |
+
height=6000,
|
82 |
+
elem_id="leaderboard-table",
|
83 |
+
interactive=False,
|
84 |
+
visible=True,
|
85 |
+
column_widths=[50, 260,120, 120, 120, 130,100,100,110,100],
|
86 |
+
wrap=True
|
87 |
+
# min_width=60,
|
88 |
+
)
|
89 |
+
# checkbox_show_task_categorized.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
|
90 |
+
# show_open_source_model_only.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
|
91 |
+
# rank_column_radio.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def _tab_submit():
|
96 |
+
pass
|
97 |
+
|
98 |
+
|
99 |
+
def build_demo():
|
100 |
+
global original_df, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
|
101 |
+
|
102 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
|
103 |
+
gr.HTML(BANNER, elem_id="banner")
|
104 |
+
# convert LAST_UPDATED to the PDT time
|
105 |
+
LAST_UPDATED = datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S")
|
106 |
+
# header_md_text = HEADER_MD.replace("{model_num}", str(len(original_df["-1"]))).replace("{LAST_UPDATED}", str(LAST_UPDATED))
|
107 |
+
# gr.Markdown(header_md_text, elem_classes="markdown-text")
|
108 |
+
|
109 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
110 |
+
with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0):
|
111 |
+
_tab_leaderboard()
|
112 |
+
|
113 |
+
with gr.TabItem("🚀 Submit Your Results", elem_id="od-benchmark-tab-table", id=3):
|
114 |
+
_tab_submit()
|
115 |
+
|
116 |
+
with gr.TabItem("📮 About Us", elem_id="od-benchmark-tab-table", id=4):
|
117 |
+
gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
with gr.Accordion("📙 Citation", open=False, elem_classes="accordion-label"):
|
121 |
+
gr.Textbox(
|
122 |
+
value=CITATION_TEXT,
|
123 |
+
lines=7,
|
124 |
+
label="Copy the BibTeX snippet to cite this source",
|
125 |
+
elem_id="citation-button",
|
126 |
+
show_copy_button=True)
|
127 |
+
# ).style(show_copy_button=True)
|
128 |
+
|
129 |
+
return demo
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
def data_load(result_file):
|
134 |
+
global original_df
|
135 |
+
print(f"Loading {result_file}")
|
136 |
+
column_names_main = column_names.copy()
|
137 |
+
# column_names_main.update({})
|
138 |
+
main_ordered_columns = ORDERED_COLUMN_NAMES
|
139 |
+
click_url = True
|
140 |
+
# read json file from the result_file
|
141 |
+
with open(result_file, "r") as f:
|
142 |
+
data = json.load(f)
|
143 |
+
# floatify the data, if possible
|
144 |
+
for d in data:
|
145 |
+
for k, v in d.items():
|
146 |
+
try:
|
147 |
+
d[k] = float(v)
|
148 |
+
except:
|
149 |
+
pass
|
150 |
+
original_df = pd.DataFrame(data)
|
151 |
+
original_df = post_processing(original_df, column_names_main, ordered_columns=main_ordered_columns, click_url=click_url, rank_column=RANKING_COLUMN)
|
152 |
+
# print(original_df.columns)
|
153 |
+
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
parser = argparse.ArgumentParser()
|
157 |
+
parser.add_argument("--share", action="store_true")
|
158 |
+
parser.add_argument("--result_file", help="Path to results table", default="ZeroEval-main/result_dirs/zebra-grid.summary.json")
|
159 |
+
|
160 |
+
args = parser.parse_args()
|
161 |
+
data_load(args.result_file)
|
162 |
+
print(original_df)
|
163 |
+
demo = build_demo()
|
164 |
+
demo.launch(share=args.share, height=3000, width="100%")
|
constants.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from collections import OrderedDict
|
3 |
+
|
4 |
+
DEFAULT_K = "∞"
|
5 |
+
# DEFAULT_K = "1500"
|
6 |
+
|
7 |
+
banner_url = "https://allenai.github.io/WildBench/gray_banner.png" # the same repo here.
|
8 |
+
BANNER = f'<div style="display: flex; justify-content: flex-start;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 800px;"> </div>'
|
9 |
+
|
10 |
+
TITLE = "<html> <head> <style> h1 {text-align: center;} </style> </head> <body> <h1> 🦁 AI2 WildBench Leaderboard </b> </body> </html>"
|
11 |
+
|
12 |
+
WINRATE_HEATMAP = "<div><img src='https://github.com/WildEval/WildBench-Leaderboard/blob/main/gradio/pairwise_win_fractions.png?raw=true' style='width:100%;'></div>"
|
13 |
+
|
14 |
+
CITATION_TEXT = """@misc{lin2024wildbench,
|
15 |
+
title={WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild},
|
16 |
+
author={Bill Yuchen Lin and Yuntian Deng and Khyathi Chandu and Faeze Brahman and Abhilasha Ravichander and Valentina Pyatkin and Nouha Dziri and Ronan Le Bras and Yejin Choi},
|
17 |
+
year={2024},
|
18 |
+
eprint={2406.04770},
|
19 |
+
archivePrefix={arXiv},
|
20 |
+
primaryClass={cs.CL},
|
21 |
+
url={https://arxiv.org/abs/2406.04770}
|
22 |
+
}
|
23 |
+
"""
|
24 |
+
|
25 |
+
# make column_names as an ordered dict
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
column_names = OrderedDict({
|
30 |
+
"Model": "Model",
|
31 |
+
"Mode": "Mode",
|
32 |
+
"Puzzle Acc": "Puzzle Acc",
|
33 |
+
"Cell Acc": "Cell Acc",
|
34 |
+
"No answer": "No answer",
|
35 |
+
"Easy Puzzle Acc": "Easy Puzzle Acc",
|
36 |
+
"Hard Puzzle Acc": "Hard Puzzle Acc",
|
37 |
+
# "Total Puzzles": "Total Puzzles",
|
38 |
+
# "Reason Lens": "Reason Lens",
|
39 |
+
})
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
LEADERBOARD_REMARKS = """**WB Reward**: for each comparison (A vs B), a reward for A is **+/-1** if A is **much better/worse** than B, and **+/-0.5** if A is **slightly better/worse** than B; when there is a **Tie**, the reward is **0**.
|
44 |
+
"""
|
45 |
+
|
46 |
+
# **WB Reward**: for each pairwise comparison, a reward for A is **+/-1** if A is **much better/worse** than B, and **+/-0.5** if A is **slightly better/worse** than B; 0 for a **Tie**.
|
47 |
+
# The baseline models are GPT4-Turbo, Haiku, and Llama2-70B, and Mix is the average of the three.
|
48 |
+
# **WB Score** individually scores each model based on checklists.
|
49 |
+
# Evaluator is GPT-4-Turbo.
|
50 |
+
LEADERBOARD_REMARKS_MAIN = """
|
51 |
+
"""
|
52 |
+
|
53 |
+
RANKING_COLUMN = "Puzzle Acc"
|
54 |
+
|
55 |
+
ORDERED_COLUMN_NAMES = [
|
56 |
+
"Model",
|
57 |
+
"Mode",
|
58 |
+
"Puzzle Acc",
|
59 |
+
"Easy Puzzle Acc",
|
60 |
+
"Hard Puzzle Acc",
|
61 |
+
"Cell Acc",
|
62 |
+
"No answer",
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
js_light = """
|
67 |
+
function refresh() {
|
68 |
+
const url = new URL(window.location);
|
69 |
+
|
70 |
+
if (url.searchParams.get('__theme') !== 'light') {
|
71 |
+
url.searchParams.set('__theme', 'light');
|
72 |
+
window.location.href = url.href;
|
73 |
+
}
|
74 |
+
|
75 |
+
// Find the fieldset with the given id
|
76 |
+
const fieldset = document.getElementById("rank-column-radio");
|
77 |
+
|
78 |
+
// Create a new span element with the text "Rank by:"
|
79 |
+
const rankBySpan = document.createElement("span");
|
80 |
+
rankBySpan.textContent = "Rank by: ";
|
81 |
+
rankBySpan.style.fontWeight = "bold"; // Optional: make the text bold
|
82 |
+
rankBySpan.style.fontSize = "19px"; // Larger font size
|
83 |
+
rankBySpan.style.paddingRight = "18px"; // Add padding on the right
|
84 |
+
|
85 |
+
// Wrap the span and the labels in a flex container
|
86 |
+
const flexContainer = document.createElement("div");
|
87 |
+
flexContainer.style.display = "flex";
|
88 |
+
flexContainer.style.alignItems = "center";
|
89 |
+
|
90 |
+
// Insert the rankBySpan at the beginning of the flex container
|
91 |
+
flexContainer.appendChild(rankBySpan);
|
92 |
+
|
93 |
+
// Move all existing labels into the flex container
|
94 |
+
while (fieldset.firstChild) {
|
95 |
+
flexContainer.appendChild(fieldset.firstChild);
|
96 |
+
}
|
97 |
+
|
98 |
+
// Append the flex container back to the fieldset
|
99 |
+
fieldset.appendChild(flexContainer);
|
100 |
+
}
|
101 |
+
"""
|
102 |
+
|
103 |
+
js_code = """
|
104 |
+
function scroll_top() {
|
105 |
+
console.log("Hello from Gradio!");
|
106 |
+
const bubbles = document.querySelectorAll('.bubble-wrap');
|
107 |
+
bubbles.forEach((bubble, index) => {
|
108 |
+
setTimeout(() => {
|
109 |
+
bubble.scrollTop = 0;
|
110 |
+
}, index * 100); // Delay of 100ms between each iteration
|
111 |
+
});
|
112 |
+
|
113 |
+
}
|
114 |
+
"""
|
115 |
+
|
116 |
+
|
117 |
+
TASK_TYPE_STR = "**Tasks**: Info seeking (**InfoSek**), Creative Writing (**CrtWrt**), Coding&Debugging (**Code**), Reasoning (**Reason**), Editing (**Edit**), **Math**, Planning (**Plan**), Brainstorming (**Brnstrm**), Role playing (**RolPly**), Advice seeking (**AdvSek**), Data Analysis (**DataAna**)"
|
118 |
+
|
119 |
+
css = """
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
code {
|
124 |
+
font-size: large;
|
125 |
+
}
|
126 |
+
footer {visibility: hidden}
|
127 |
+
.top-left-LP{
|
128 |
+
margin-top: 6px;
|
129 |
+
margin-left: 5px;
|
130 |
+
}
|
131 |
+
.no_margin{
|
132 |
+
margin-top: 0px;
|
133 |
+
margin-left: 0px;
|
134 |
+
margin-right: 0px;
|
135 |
+
margin-bottom: 0px;
|
136 |
+
padding-top: 0px;
|
137 |
+
padding-left: 0px;
|
138 |
+
padding-right: 0px;
|
139 |
+
padding-bottom: 0px;
|
140 |
+
}
|
141 |
+
.markdown-text{font-size: 14pt}
|
142 |
+
.markdown-text-tiny{font-size: 10pt}
|
143 |
+
.markdown-text-small{font-size: 13pt}
|
144 |
+
.markdown-text-tiny{font-size: 12pt}
|
145 |
+
.markdown-text-tiny-red{
|
146 |
+
font-size: 12pt;
|
147 |
+
color: red;
|
148 |
+
background-color: yellow;
|
149 |
+
font-color: red;
|
150 |
+
font-weight: bold;
|
151 |
+
}
|
152 |
+
th {
|
153 |
+
text-align: center;
|
154 |
+
font-size: 17px; /* Adjust the font size as needed */
|
155 |
+
}
|
156 |
+
td {
|
157 |
+
font-size: 15px; /* Adjust the font size as needed */
|
158 |
+
text-align: center;
|
159 |
+
}
|
160 |
+
|
161 |
+
.sample_button{
|
162 |
+
border: 2px solid #000000;
|
163 |
+
border-radius: 10px;
|
164 |
+
padding: 10px;
|
165 |
+
font-size: 17pt;
|
166 |
+
font-weight: bold;
|
167 |
+
margin: 5px;
|
168 |
+
background-color: #D8BFD8;
|
169 |
+
}
|
170 |
+
|
171 |
+
.chat-common{
|
172 |
+
height: auto;
|
173 |
+
max-height: 400px;
|
174 |
+
min-height: 100px;
|
175 |
+
}
|
176 |
+
.chat-specific{
|
177 |
+
height: auto;
|
178 |
+
max-height: 600px;
|
179 |
+
min-height: 200px;
|
180 |
+
}
|
181 |
+
#od-benchmark-tab-table-button{
|
182 |
+
font-size: 15pt;
|
183 |
+
font-weight: bold;
|
184 |
+
}
|
185 |
+
|
186 |
+
.btn_boderline{
|
187 |
+
border: 1px solid #000000;
|
188 |
+
border-radius: 5px;
|
189 |
+
padding: 5px;
|
190 |
+
margin: 5px;
|
191 |
+
font-size: 15pt;
|
192 |
+
font-weight: bold;
|
193 |
+
}
|
194 |
+
|
195 |
+
.btn_boderline_next{
|
196 |
+
border: 0.1px solid #000000;
|
197 |
+
border-radius: 5px;
|
198 |
+
padding: 5px;
|
199 |
+
margin: 5px;
|
200 |
+
font-size: 15pt;
|
201 |
+
font-weight: bold;
|
202 |
+
}
|
203 |
+
|
204 |
+
.btn_boderline_gray{
|
205 |
+
border: 0.5px solid gray;
|
206 |
+
border-radius: 5px;
|
207 |
+
padding: 5px;
|
208 |
+
margin: 5px;
|
209 |
+
font-size: 15pt;
|
210 |
+
font-weight: italic;
|
211 |
+
}
|
212 |
+
.btn_boderline_selected{
|
213 |
+
border: 2px solid purple;
|
214 |
+
background-color: #f2f2f2;
|
215 |
+
border-radius: 5px;
|
216 |
+
padding: 5px;
|
217 |
+
margin: 5px;
|
218 |
+
font-size: 15pt;
|
219 |
+
font-weight: bold;
|
220 |
+
}
|
221 |
+
.accordion-label button span{
|
222 |
+
font-size: 14pt;
|
223 |
+
font-weight: bold;
|
224 |
+
}
|
225 |
+
|
226 |
+
#show-task-categorized span{
|
227 |
+
font-size: 13pt;
|
228 |
+
font-weight: bold;
|
229 |
+
}
|
230 |
+
|
231 |
+
#show-open-source-models span{
|
232 |
+
font-size: 13pt;
|
233 |
+
font-weight: bold;
|
234 |
+
}
|
235 |
+
|
236 |
+
#select-models span{
|
237 |
+
font-size: 10pt;
|
238 |
+
}
|
239 |
+
|
240 |
+
#select-tasks span{
|
241 |
+
font-size: 10pt;
|
242 |
+
}
|
243 |
+
|
244 |
+
|
245 |
+
.markdown-text-details{
|
246 |
+
margin: 10px;
|
247 |
+
padding: 10px;
|
248 |
+
}
|
249 |
+
|
250 |
+
|
251 |
+
button.selected[role="tab"][aria-selected="true"] {
|
252 |
+
font-size: 18px; /* or any other size you prefer */
|
253 |
+
font-weight: bold;
|
254 |
+
}
|
255 |
+
|
256 |
+
#od-benchmark-tab-table-ablation-button {
|
257 |
+
font-size: larger; /* Adjust the font size as needed */
|
258 |
+
}
|
259 |
+
|
260 |
+
|
261 |
+
.plotly-plot{
|
262 |
+
height: auto;
|
263 |
+
max-height: 600px;
|
264 |
+
min-height: 600px;
|
265 |
+
}
|
266 |
+
|
267 |
+
#length-margin-radio{
|
268 |
+
font-size: 10pt;
|
269 |
+
# padding: 0px;
|
270 |
+
# margin: 1px;
|
271 |
+
}
|
272 |
+
|
273 |
+
#show-task-categorized{
|
274 |
+
font-size: 12pt;
|
275 |
+
font-decoration: bold;
|
276 |
+
}
|
277 |
+
|
278 |
+
#show-open-source-models{
|
279 |
+
font-size: 12pt;
|
280 |
+
font-decoration: bold;
|
281 |
+
}
|
282 |
+
"""
|
283 |
+
|
data_utils.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset, Dataset
|
2 |
+
import os
|
3 |
+
from datasets import load_dataset
|
4 |
+
from datasets.utils.logging import disable_progress_bar
|
5 |
+
from constants import column_names, RANKING_COLUMN, ORDERED_COLUMN_NAMES
|
6 |
+
from utils_display import make_clickable_model
|
7 |
+
|
8 |
+
import random
|
9 |
+
disable_progress_bar()
|
10 |
+
import math
|
11 |
+
import json
|
12 |
+
from tqdm import tqdm
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
id_to_data = None
|
16 |
+
model_len_info = None
|
17 |
+
bench_data = None
|
18 |
+
eval_results = None
|
19 |
+
score_eval_results = None
|
20 |
+
|
21 |
+
# Formats the columns
|
22 |
+
def formatter(x):
|
23 |
+
if type(x) is str:
|
24 |
+
x = x
|
25 |
+
else:
|
26 |
+
x = round(x, 1)
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
def post_processing(df, column_names, rank_column=RANKING_COLUMN, ordered_columns=ORDERED_COLUMN_NAMES, click_url=True):
|
31 |
+
for col in df.columns:
|
32 |
+
if col == "Model" and click_url:
|
33 |
+
df[col] = df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
|
34 |
+
else:
|
35 |
+
df[col] = df[col].apply(formatter) # For numerical values
|
36 |
+
if "Elo" in col:
|
37 |
+
df[col] = df[col].replace('-', np.nan).astype(float)
|
38 |
+
|
39 |
+
|
40 |
+
df.rename(columns=column_names, inplace=True)
|
41 |
+
list_columns = [col for col in ordered_columns if col in df.columns]
|
42 |
+
df = df[list_columns]
|
43 |
+
if rank_column in df.columns:
|
44 |
+
df.sort_values(by=rank_column, inplace=True, ascending=False)
|
45 |
+
return df
|
46 |
+
|
init.py
ADDED
File without changes
|
model_info.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Qwen2-72B-Instruct": {"pretty_name": "Qwen2-72B-Instruct", "hf_model_id": "Qwen/Qwen2-72B-Instruct"},
|
3 |
+
"Qwen2-7B-Instruct": {"pretty_name": "Qwen2-7B-Instruct", "hf_model_id": "Qwen/Qwen2-7B-Instruct"},
|
4 |
+
"Qwen1.5-72B-Chat-greedy": {"pretty_name": "Qwen1.5-72B-Chat", "hf_model_id": "Qwen/Qwen1.5-72B-Chat"},
|
5 |
+
"Qwen1.5-7B-Chat": {"pretty_name": "Qwen1.5-7B-Chat", "hf_model_id": "Qwen/Qwen1.5-7B-Chat"},
|
6 |
+
"Meta-Llama-3-8B-Instruct": {"pretty_name": "Llama-3-8B-Instruct", "hf_model_id": "meta-llama/Meta-Llama-3-8B-Instruct"},
|
7 |
+
"Meta-Llama-3-70B-Instruct": {"pretty_name": "Llama-3-70B-Instruct", "hf_model_id": "meta-llama/Meta-Llama-3-70B-Instruct"},
|
8 |
+
"Llama-2-13b-chat-hf": {"pretty_name": "Llama-2-13B-chat", "hf_model_id": "meta-llama/Llama-2-13b-chat-hf"},
|
9 |
+
"Llama-2-70b-chat-hf": {"pretty_name": "Llama-2-70B-chat", "hf_model_id": "meta-llama/Llama-2-70b-chat-hf"},
|
10 |
+
"Llama-2-7b-chat-hf": {"pretty_name": "Llama-2-7B-chat", "hf_model_id": "meta-llama/Llama-2-7b-chat-hf"},
|
11 |
+
"Mistral-7B-Instruct-v0.1": {"pretty_name": "Mistral-7B-Instruct", "hf_model_id": "mistralai/Mistral-7B-Instruct-v0.1"},
|
12 |
+
"Mistral-7B-Instruct-v0.2": {"pretty_name": "Mistral-7B-Instruct-v0.2", "hf_model_id": "mistralai/Mistral-7B-Instruct-v0.2"},
|
13 |
+
"Mixtral-8x7B-Instruct-v0.1": {"pretty_name": "Mixtral-8x7B-Instruct", "hf_model_id": "mistralai/Mixtral-8x7B-Instruct-v0.1"},
|
14 |
+
"command-r": {"pretty_name": "Command-R", "hf_model_id": "https://cohere.com/command"},
|
15 |
+
"command-r-plus": {"pretty_name": "Command-R-Plus", "hf_model_id": "https://cohere.com/command"},
|
16 |
+
"Phi-3-medium-128k-instruct": {"pretty_name": "Phi-3-medium-128k", "hf_model_id": "microsoft/Phi-3-medium-128k-instruct"},
|
17 |
+
"Phi-3-mini-128k-instruct": {"pretty_name": "Phi-3-mini-128k", "hf_model_id": "microsoft/Phi-3-mini-128k-instruct"},
|
18 |
+
"Nous-Hermes-2-Mixtral-8x7B-DPO": {"pretty_name": "Hermes-2-Mixtral-8x7B-DPO", "hf_model_id": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO"},
|
19 |
+
"Hermes-2-Theta-Llama-3-8B": {"pretty_name": "Hermes-2-Theta-Llama-3-8B", "hf_model_id": "NousResearch/Hermes-2-Theta-Llama-3-8B"},
|
20 |
+
"yi-large": {"pretty_name": "Yi-Large", "hf_model_id": "https://platform.01.ai/"},
|
21 |
+
"yi-large-preview": {"pretty_name": "Yi-Large-Preview", "hf_model_id": "https://platform.01.ai/"},
|
22 |
+
"Yi-1.5-34B-Chat": {"pretty_name": "Yi-1.5-34B-Chat", "hf_model_id": "01-ai/Yi-1.5-34B-Chat"},
|
23 |
+
"Yi-1.5-9B-Chat": {"pretty_name": "Yi-1.5-9B-Chat", "hf_model_id": "01-ai/Yi-1.5-9B-Chat"},
|
24 |
+
"Yi-1.5-6B-Chat": {"pretty_name": "Yi-1.5-6B-Chat", "hf_model_id": "01-ai/Yi-1.5-6B-Chat"},
|
25 |
+
"reka-flash-20240226": {"pretty_name": "Reka Flash", "hf_model_id": "https://www.reka.ai/"},
|
26 |
+
"reka-core-20240501": {"pretty_name": "Reka Core", "hf_model_id": "https://www.reka.ai/"},
|
27 |
+
"reka-edge": {"pretty_name": "Reka Edge", "hf_model_id": "https://www.reka.ai/"},
|
28 |
+
"gemini-1.5-pro": {"pretty_name": "Gemini 1.5 Pro", "hf_model_id": "https://blog.google/technology/ai/google-gemini-ai/"},
|
29 |
+
"gemini-1.5-flash": {"pretty_name": "Gemini 1.5 Flash", "hf_model_id": "https://blog.google/technology/ai/google-gemini-ai/"},
|
30 |
+
"gemma-7b-it": {"pretty_name": "Gemma-7B-it", "hf_model_id": "google/gemma-7b-it"},
|
31 |
+
"gemma-2b-it": {"pretty_name": "Gemma-2B-it", "hf_model_id": "google/gemma-2b-it"},
|
32 |
+
"gpt-3.5-turbo-0125": {"pretty_name": "gpt-3.5-turbo-0125", "hf_model_id": "https://platform.openai.com/"},
|
33 |
+
"gpt-4-0125-preview": {"pretty_name": "gpt-4-0125-preview", "hf_model_id": "https://platform.openai.com/"},
|
34 |
+
"gpt-4o-2024-05-13": {"pretty_name": "gpt-4o-2024-05-13", "hf_model_id": "https://platform.openai.com/"},
|
35 |
+
"gpt-4-turbo-2024-04-09": {"pretty_name": "gpt-4-turbo-2024-04-09", "hf_model_id": "https://platform.openai.com/"},
|
36 |
+
"gpt-4-0314": {"pretty_name": "gpt-4-0314", "hf_model_id": "https://platform.openai.com/"},
|
37 |
+
"tulu-2-dpo-70b": {"pretty_name": "Tulu-2-dpo-70b", "hf_model_id": "allenai/tulu-2-dpo-70b"},
|
38 |
+
"zephyr-7b-beta": {"pretty_name": "Zephyr-7b-beta", "hf_model_id": "HuggingFaceH4/zephyr-7b-beta"},
|
39 |
+
"mistral-large-2402": {"pretty_name": "Mistral-Large", "hf_model_id": "https://mistral.ai/news/mistral-large/"},
|
40 |
+
"claude-3-haiku-20240307": {"pretty_name": "Claude 3 Haiku", "hf_model_id": "https://www.anthropic.com/claude"},
|
41 |
+
"claude-3-opus-20240229": {"pretty_name": "Claude 3 Opus", "hf_model_id": "https://www.anthropic.com/claude"},
|
42 |
+
"claude-3-sonnet-20240229": {"pretty_name": "Claude 3 Sonnet", "hf_model_id": "https://www.anthropic.com/claude"},
|
43 |
+
"claude-3-5-sonnet-20240620": {"pretty_name": "Claude 3.5 Sonnet", "hf_model_id": "https://www.anthropic.com/claude"},
|
44 |
+
"Starling-LM-7B-beta": {"pretty_name": "StarlingLM-7B-beta", "hf_model_id": "Nexusflow/Starling-LM-7B-beta"},
|
45 |
+
"dbrx-instruct": {"pretty_name": "DBRX Instruct", "hf_model_id": "databricks/dbrx-instruct"},
|
46 |
+
"Llama-3-Instruct-8B-SimPO": {"pretty_name": "Llama3-Inst-8B-SimPO", "hf_model_id": "princeton-nlp/Llama-3-Instruct-8B-SimPO"},
|
47 |
+
"Llama-3-Instruct-8B-SimPO-ExPO": {"pretty_name": "Llama3-Inst-8B-SimPO-ExPO", "hf_model_id": "chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO"},
|
48 |
+
"Starling-LM-7B-beta-ExPO": {"pretty_name": "Starling-LM-7B-beta-ExPO", "hf_model_id": "chujiezheng/Starling-LM-7B-beta-ExPO"},
|
49 |
+
"SELM-Zephyr-7B-iter-3": {"pretty_name": "SELM (Zephyr-7B-iter3)", "hf_model_id": "ZhangShenao/SELM-Zephyr-7B-iter-3"},
|
50 |
+
"deepseekv2-chat": {"pretty_name": "DeepSeek-V2-Chat", "hf_model_id": "deepseek-ai/DeepSeek-V2-Chat"},
|
51 |
+
"deepseek-coder-v2": {"pretty_name": "DeepSeek-Coder-V2-Inst", "hf_model_id": "deepseek-ai/DeepSeek-Coder-V2-Instruct"},
|
52 |
+
"deepseek-chat": {"pretty_name": "DeepSeek-V2-Chat", "hf_model_id": "https://platform.deepseek.com/api-docs/api/deepseek-api/", "open": true},
|
53 |
+
"deepseek-coder": {"pretty_name": "DeepSeek-Coder-V2", "hf_model_id": "https://platform.deepseek.com/api-docs/api/deepseek-api/", "open": true},
|
54 |
+
"gemma-2-27b-it@nvidia": {"pretty_name": "Gemma-2-27B-it", "hf_model_id": "https://huggingface.co/google/gemma-2-27b-it"},
|
55 |
+
"gemma-2-9b-it@nvidia": {"pretty_name": "Gemma-2-9B-it", "hf_model_id": "https://huggingface.co/google/gemma-2-9b-it"},
|
56 |
+
"neo_7b_instruct_v0.1": {"pretty_name": "Neo-7B-Instruct", "hf_model_id": "m-a-p/neo_7b_instruct_v0.1"},
|
57 |
+
"Yi-34B-Chat": {"pretty_name": "Yi-34B-Chat", "hf_model_id": "01-ai/Yi-34B-chat"},
|
58 |
+
"vicuna-13b-v1.5": {"pretty_name": "Vicuna-13b-v1.5", "hf_model_id": "lmsys/vicuna-13b-v1.5"},
|
59 |
+
"zephyr-7b-gemma-v0.1": {"pretty_name": "Zephyr-7b-Gemma", "hf_model_id": "HuggingFaceH4/zephyr-7b-gemma-v0.1"},
|
60 |
+
"glm-4-9b-chat": {"pretty_name": "GLM-4-9B-Chat", "hf_model_id": "THUDM/glm-4-9b-chat"},
|
61 |
+
"neo_7b_instruct_v0.1-ExPO": {"pretty_name": "Neo-7B-Instruct-ExPO", "hf_model_id": "chujiezheng/neo_7b_instruct_v0.1-ExPO"},
|
62 |
+
"SELM-Llama-3-8B-Instruct-iter-3": {"pretty_name": "SELM (Llama3-8B-Inst-iter3)", "hf_model_id": "ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3"},
|
63 |
+
"nemotron-4-340b-instruct": {"pretty_name": "Nemotron-4-340B-Instruct", "hf_model_id": "nvidia/Nemotron-4-340B-Instruct"},
|
64 |
+
"Llama-3-8B-Magpie-Align-v0.1": {"pretty_name": "Magpie-8B-Align-v0.1", "hf_model_id": "Magpie-Align/Llama-3-8B-Magpie-Align-v0.1"}
|
65 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio[oauth]==4.19.2
|
2 |
+
datasets
|
3 |
+
toolz==0.12.1
|
4 |
+
plotly
|
style.css
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif;
|
3 |
+
}
|
4 |
+
|
5 |
+
h1 {
|
6 |
+
font-size: 16px;
|
7 |
+
margin-top: 0;
|
8 |
+
}
|
9 |
+
|
10 |
+
p {
|
11 |
+
color: rgb(107, 114, 128);
|
12 |
+
font-size: 15px;
|
13 |
+
margin-bottom: 10px;
|
14 |
+
margin-top: 5px;
|
15 |
+
}
|
16 |
+
|
17 |
+
.card {
|
18 |
+
max-width: 620px;
|
19 |
+
margin: 0 auto;
|
20 |
+
padding: 16px;
|
21 |
+
border: 1px solid lightgray;
|
22 |
+
border-radius: 16px;
|
23 |
+
}
|
24 |
+
|
25 |
+
.card p:last-child {
|
26 |
+
margin-bottom: 0;
|
27 |
+
}
|
themes.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Iterable
|
3 |
+
import gradio as gr
|
4 |
+
from gradio.themes.base import Base
|
5 |
+
from gradio.themes.utils import colors, fonts, sizes
|
6 |
+
import time
|
7 |
+
|
8 |
+
class Seafoam(Base):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
*,
|
12 |
+
primary_hue: colors.Color | str = colors.blue,
|
13 |
+
secondary_hue: colors.Color | str = colors.gray,
|
14 |
+
neutral_hue: colors.Color | str = colors.gray,
|
15 |
+
spacing_size: sizes.Size | str = sizes.spacing_md,
|
16 |
+
radius_size: sizes.Size | str = sizes.radius_md,
|
17 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
18 |
+
font: fonts.Font
|
19 |
+
| str
|
20 |
+
| Iterable[fonts.Font | str] = (
|
21 |
+
fonts.GoogleFont("Quicksand"),
|
22 |
+
"ui-sans-serif",
|
23 |
+
"sans-serif",
|
24 |
+
),
|
25 |
+
font_mono: fonts.Font
|
26 |
+
| str
|
27 |
+
| Iterable[fonts.Font | str] = (
|
28 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
29 |
+
"ui-monospace",
|
30 |
+
"monospace",
|
31 |
+
),
|
32 |
+
):
|
33 |
+
super().__init__(
|
34 |
+
primary_hue=primary_hue,
|
35 |
+
secondary_hue=secondary_hue,
|
36 |
+
neutral_hue=neutral_hue,
|
37 |
+
spacing_size=spacing_size,
|
38 |
+
radius_size=radius_size,
|
39 |
+
text_size=text_size,
|
40 |
+
font=font,
|
41 |
+
font_mono=font_mono,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
seafoam = Seafoam()
|
update_data.sh
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
TARGET_DIR="ZeroEval-main"
|
2 |
+
|
3 |
+
rm -r $TARGET_DIR
|
4 |
+
# Download the ZIP file
|
5 |
+
curl -L -o zeroeval.zip https://github.com/yuchenlin/ZeroEval/archive/refs/heads/main.zip
|
6 |
+
unzip zeroeval.zip
|
7 |
+
rm zeroeval.zip
|
8 |
+
|
9 |
+
#!/bin/bash
|
10 |
+
|
11 |
+
# Define the target directory and the exception folder
|
12 |
+
EXCEPTION_FOLDER="result_dirs"
|
13 |
+
|
14 |
+
# Ensure the target directory exists
|
15 |
+
if [ -d "$TARGET_DIR" ]; then
|
16 |
+
# Loop through each item in the target directory
|
17 |
+
for item in "$TARGET_DIR"/*; do
|
18 |
+
# Check if it is not the exception folder
|
19 |
+
if [ "$(basename "$item")" != "$EXCEPTION_FOLDER" ]; then
|
20 |
+
# Remove the item (file or directory)
|
21 |
+
rm -rf "$item"
|
22 |
+
echo "Removed: $item"
|
23 |
+
fi
|
24 |
+
done
|
25 |
+
else
|
26 |
+
echo "Target directory does not exist: $TARGET_DIR"
|
27 |
+
fi
|
28 |
+
|
29 |
+
# only keep the result_dirs/zebra-grid under result_dirs folder; remove all other sub-folders under result_dirs
|
30 |
+
# Remove all subdirectories in result_dirs except zebra-grid
|
31 |
+
find "$TARGET_DIR/result_dirs" -maxdepth 1 -type d ! -name 'zebra-grid' ! -name 'result_dirs' -exec rm -rf {} +
|
32 |
+
|
33 |
+
rm -rf $TARGET_DIR/.github
|
34 |
+
rm -rf $TARGET_DIR/.gitignore
|
35 |
+
|
36 |
+
|
37 |
+
# tables
|
38 |
+
|
39 |
+
|
40 |
+
# bash update_table.sh
|
update_table.sh
ADDED
File without changes
|
utils_display.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
with open("model_info.json", "r") as f:
|
4 |
+
model_info = json.load(f)
|
5 |
+
|
6 |
+
def make_clickable_model(model_name):
|
7 |
+
global model_info
|
8 |
+
modified_model_name = model_name
|
9 |
+
if model_name in model_info:
|
10 |
+
if model_info[model_name]["hf_model_id"].startswith("http"):
|
11 |
+
link = model_info[model_name]["hf_model_id"]
|
12 |
+
modified_model_name = f'🔒 <a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_info[model_name]["pretty_name"]}</a>'
|
13 |
+
else:
|
14 |
+
link = f"https://huggingface.co/{model_info[model_name]['hf_model_id']}"
|
15 |
+
modified_model_name = f'🔑 <a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_info[model_name]["pretty_name"]}</a>'
|
16 |
+
if "Neo-7B" in modified_model_name:
|
17 |
+
# models that are fully open source
|
18 |
+
modified_model_name = modified_model_name.replace("🔑", "💎🔑")
|
19 |
+
|
20 |
+
if "🚨</a>" in modified_model_name:
|
21 |
+
modified_model_name = modified_model_name.replace(' 🚨</a>', '</a> 🚨')
|
22 |
+
# if model_name in ["gpt-4-turbo-2024-04-09", "Llama-2-70b-chat-hf", "claude-3-haiku-20240307"]:
|
23 |
+
# modified_model_name = modified_model_name.replace('style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;"', 'style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted; font-weight: bold; background-color: var(--link-background-color);"')
|
24 |
+
return modified_model_name
|
25 |
+
|
26 |
+
|
27 |
+
def styled_error(error):
|
28 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
29 |
+
|
30 |
+
def styled_warning(warn):
|
31 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
32 |
+
|
33 |
+
def styled_message(message):
|
34 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|