sayakpaul's picture
sayakpaul HF staff
add files
c4b2b37
raw
history blame
8.33 kB
import json
import os
from dataclasses import asdict, dataclass, is_dataclass
from itertools import chain
from typing import Dict, FrozenSet, List, Set, Tuple, Union
@dataclass(eq=True, frozen=True)
class Evidence:
"""
(docid, start_token, end_token) form the only official Evidence; sentence level annotations are for convenience.
Args:
text: Some representation of the evidence text
docid: Some identifier for the document
start_token: The canonical start token, inclusive
end_token: The canonical end token, exclusive
start_sentence: Best guess start sentence, inclusive
end_sentence: Best guess end sentence, exclusive
"""
text: Union[str, Tuple[int], Tuple[str]]
docid: str
start_token: int = -1
end_token: int = -1
start_sentence: int = -1
end_sentence: int = -1
@dataclass(eq=True, frozen=True)
class Annotation:
"""
Args:
annotation_id: unique ID for this annotation element
query: some representation of a query string
evidences: a set of "evidence groups".
Each evidence group is:
* sufficient to respond to the query (or justify an answer)
* composed of one or more Evidences
* may have multiple documents in it (depending on the dataset)
- e-snli has multiple documents
- other datasets do not
classification: str
query_type: Optional str, additional information about the query
docids: a set of docids in which one may find evidence.
"""
annotation_id: str
query: Union[str, Tuple[int]]
evidences: Union[Set[Tuple[Evidence]], FrozenSet[Tuple[Evidence]]]
classification: str
query_type: str = None
docids: Set[str] = None
def all_evidences(self) -> Tuple[Evidence]:
return tuple(list(chain.from_iterable(self.evidences)))
def annotations_to_jsonl(annotations, output_file):
with open(output_file, "w") as of:
for ann in sorted(annotations, key=lambda x: x.annotation_id):
as_json = _annotation_to_dict(ann)
as_str = json.dumps(as_json, sort_keys=True)
of.write(as_str)
of.write("\n")
def _annotation_to_dict(dc):
# convenience method
if is_dataclass(dc):
d = asdict(dc)
ret = dict()
for k, v in d.items():
ret[k] = _annotation_to_dict(v)
return ret
elif isinstance(dc, dict):
ret = dict()
for k, v in dc.items():
k = _annotation_to_dict(k)
v = _annotation_to_dict(v)
ret[k] = v
return ret
elif isinstance(dc, str):
return dc
elif isinstance(dc, (set, frozenset, list, tuple)):
ret = []
for x in dc:
ret.append(_annotation_to_dict(x))
return tuple(ret)
else:
return dc
def load_jsonl(fp: str) -> List[dict]:
ret = []
with open(fp, "r") as inf:
for line in inf:
content = json.loads(line)
ret.append(content)
return ret
def write_jsonl(jsonl, output_file):
with open(output_file, "w") as of:
for js in jsonl:
as_str = json.dumps(js, sort_keys=True)
of.write(as_str)
of.write("\n")
def annotations_from_jsonl(fp: str) -> List[Annotation]:
ret = []
with open(fp, "r") as inf:
for line in inf:
content = json.loads(line)
ev_groups = []
for ev_group in content["evidences"]:
ev_group = tuple([Evidence(**ev) for ev in ev_group])
ev_groups.append(ev_group)
content["evidences"] = frozenset(ev_groups)
ret.append(Annotation(**content))
return ret
def load_datasets(
data_dir: str,
) -> Tuple[List[Annotation], List[Annotation], List[Annotation]]:
"""Loads a training, validation, and test dataset
Each dataset is assumed to have been serialized by annotations_to_jsonl,
that is it is a list of json-serialized Annotation instances.
"""
train_data = annotations_from_jsonl(os.path.join(data_dir, "train.jsonl"))
val_data = annotations_from_jsonl(os.path.join(data_dir, "val.jsonl"))
test_data = annotations_from_jsonl(os.path.join(data_dir, "test.jsonl"))
return train_data, val_data, test_data
def load_documents(
data_dir: str, docids: Set[str] = None
) -> Dict[str, List[List[str]]]:
"""Loads a subset of available documents from disk.
Each document is assumed to be serialized as newline ('\n') separated sentences.
Each sentence is assumed to be space (' ') joined tokens.
"""
if os.path.exists(os.path.join(data_dir, "docs.jsonl")):
assert not os.path.exists(os.path.join(data_dir, "docs"))
return load_documents_from_file(data_dir, docids)
docs_dir = os.path.join(data_dir, "docs")
res = dict()
if docids is None:
docids = sorted(os.listdir(docs_dir))
else:
docids = sorted(set(str(d) for d in docids))
for d in docids:
with open(os.path.join(docs_dir, d), "r") as inf:
res[d] = inf.read()
return res
def load_flattened_documents(data_dir: str, docids: Set[str]) -> Dict[str, List[str]]:
"""Loads a subset of available documents from disk.
Returns a tokenized version of the document.
"""
unflattened_docs = load_documents(data_dir, docids)
flattened_docs = dict()
for doc, unflattened in unflattened_docs.items():
flattened_docs[doc] = list(chain.from_iterable(unflattened))
return flattened_docs
def intern_documents(
documents: Dict[str, List[List[str]]], word_interner: Dict[str, int], unk_token: str
):
"""
Replaces every word with its index in an embeddings file.
If a word is not found, uses the unk_token instead
"""
ret = dict()
unk = word_interner[unk_token]
for docid, sentences in documents.items():
ret[docid] = [[word_interner.get(w, unk) for w in s] for s in sentences]
return ret
def intern_annotations(
annotations: List[Annotation], word_interner: Dict[str, int], unk_token: str
):
ret = []
for ann in annotations:
ev_groups = []
for ev_group in ann.evidences:
evs = []
for ev in ev_group:
evs.append(
Evidence(
text=tuple(
[
word_interner.get(t, word_interner[unk_token])
for t in ev.text.split()
]
),
docid=ev.docid,
start_token=ev.start_token,
end_token=ev.end_token,
start_sentence=ev.start_sentence,
end_sentence=ev.end_sentence,
)
)
ev_groups.append(tuple(evs))
ret.append(
Annotation(
annotation_id=ann.annotation_id,
query=tuple(
[
word_interner.get(t, word_interner[unk_token])
for t in ann.query.split()
]
),
evidences=frozenset(ev_groups),
classification=ann.classification,
query_type=ann.query_type,
)
)
return ret
def load_documents_from_file(
data_dir: str, docids: Set[str] = None
) -> Dict[str, List[List[str]]]:
"""Loads a subset of available documents from 'docs.jsonl' file on disk.
Each document is assumed to be serialized as newline ('\n') separated sentences.
Each sentence is assumed to be space (' ') joined tokens.
"""
docs_file = os.path.join(data_dir, "docs.jsonl")
documents = load_jsonl(docs_file)
documents = {doc["docid"]: doc["document"] for doc in documents}
# res = dict()
# if docids is None:
# docids = sorted(list(documents.keys()))
# else:
# docids = sorted(set(str(d) for d in docids))
# for d in docids:
# lines = documents[d].split('\n')
# tokenized = [line.strip().split(' ') for line in lines]
# res[d] = tokenized
return documents