|
import matplotlib.cm |
|
import numpy as np |
|
import skimage.feature |
|
import skimage.filters |
|
import skimage.io |
|
|
|
|
|
def vec2im(V, shape=()): |
|
""" |
|
Transform an array V into a specified shape - or if no shape is given assume a square output format. |
|
|
|
Parameters |
|
---------- |
|
|
|
V : numpy.ndarray |
|
an array either representing a matrix or vector to be reshaped into an two-dimensional image |
|
|
|
shape : tuple or list |
|
optional. containing the shape information for the output array if not given, the output is assumed to be square |
|
|
|
Returns |
|
------- |
|
|
|
W : numpy.ndarray |
|
with W.shape = shape or W.shape = [np.sqrt(V.size)]*2 |
|
|
|
""" |
|
|
|
if len(shape) < 2: |
|
shape = [np.sqrt(V.size)] * 2 |
|
shape = map(int, shape) |
|
return np.reshape(V, shape) |
|
|
|
|
|
def enlarge_image(img, scaling=3): |
|
""" |
|
Enlarges a given input matrix by replicating each pixel value scaling times in horizontal and vertical direction. |
|
|
|
Parameters |
|
---------- |
|
|
|
img : numpy.ndarray |
|
array of shape [H x W] OR [H x W x D] |
|
|
|
scaling : int |
|
positive integer value > 0 |
|
|
|
Returns |
|
------- |
|
|
|
out : numpy.ndarray |
|
two-dimensional array of shape [scaling*H x scaling*W] |
|
OR |
|
three-dimensional array of shape [scaling*H x scaling*W x D] |
|
depending on the dimensionality of the input |
|
""" |
|
|
|
if scaling < 1 or not isinstance(scaling, int): |
|
print("scaling factor needs to be an int >= 1") |
|
|
|
if len(img.shape) == 2: |
|
H, W = img.shape |
|
|
|
out = np.zeros((scaling * H, scaling * W)) |
|
for h in range(H): |
|
fh = scaling * h |
|
for w in range(W): |
|
fw = scaling * w |
|
out[fh : fh + scaling, fw : fw + scaling] = img[h, w] |
|
|
|
elif len(img.shape) == 3: |
|
H, W, D = img.shape |
|
|
|
out = np.zeros((scaling * H, scaling * W, D)) |
|
for h in range(H): |
|
fh = scaling * h |
|
for w in range(W): |
|
fw = scaling * w |
|
out[fh : fh + scaling, fw : fw + scaling, :] = img[h, w, :] |
|
|
|
return out |
|
|
|
|
|
def repaint_corner_pixels(rgbimg, scaling=3): |
|
""" |
|
DEPRECATED/OBSOLETE. |
|
|
|
Recolors the top left and bottom right pixel (groups) with the average rgb value of its three neighboring pixel (groups). |
|
The recoloring visually masks the opposing pixel values which are a product of stabilizing the scaling. |
|
Assumes those image ares will pretty much never show evidence. |
|
|
|
Parameters |
|
---------- |
|
|
|
rgbimg : numpy.ndarray |
|
array of shape [H x W x 3] |
|
|
|
scaling : int |
|
positive integer value > 0 |
|
|
|
Returns |
|
------- |
|
|
|
rgbimg : numpy.ndarray |
|
three-dimensional array of shape [scaling*H x scaling*W x 3] |
|
""" |
|
|
|
|
|
rgbimg[0:scaling, 0:scaling, :] = ( |
|
rgbimg[0, scaling, :] + rgbimg[scaling, 0, :] + rgbimg[scaling, scaling, :] |
|
) / 3.0 |
|
|
|
rgbimg[-scaling:, -scaling:, :] = ( |
|
rgbimg[-1, -1 - scaling, :] |
|
+ rgbimg[-1 - scaling, -1, :] |
|
+ rgbimg[-1 - scaling, -1 - scaling, :] |
|
) / 3.0 |
|
return rgbimg |
|
|
|
|
|
def digit_to_rgb(X, scaling=3, shape=(), cmap="binary"): |
|
""" |
|
Takes as input an intensity array and produces a rgb image due to some color map |
|
|
|
Parameters |
|
---------- |
|
|
|
X : numpy.ndarray |
|
intensity matrix as array of shape [M x N] |
|
|
|
scaling : int |
|
optional. positive integer value > 0 |
|
|
|
shape: tuple or list of its , length = 2 |
|
optional. if not given, X is reshaped to be square. |
|
|
|
cmap : str |
|
name of color map of choice. default is 'binary' |
|
|
|
Returns |
|
------- |
|
|
|
image : numpy.ndarray |
|
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N |
|
""" |
|
|
|
|
|
cmap = eval("matplotlib.cm.{}".format(cmap)) |
|
|
|
image = enlarge_image(vec2im(X, shape), scaling) |
|
image = cmap(image.flatten())[..., 0:3].reshape( |
|
[image.shape[0], image.shape[1], 3] |
|
) |
|
|
|
return image |
|
|
|
|
|
def hm_to_rgb(R, X=None, scaling=3, shape=(), sigma=2, cmap="bwr", normalize=True): |
|
""" |
|
Takes as input an intensity array and produces a rgb image for the represented heatmap. |
|
optionally draws the outline of another input on top of it. |
|
|
|
Parameters |
|
---------- |
|
|
|
R : numpy.ndarray |
|
the heatmap to be visualized, shaped [M x N] |
|
|
|
X : numpy.ndarray |
|
optional. some input, usually the data point for which the heatmap R is for, which shall serve |
|
as a template for a black outline to be drawn on top of the image |
|
shaped [M x N] |
|
|
|
scaling: int |
|
factor, on how to enlarge the heatmap (to control resolution and as a inverse way to control outline thickness) |
|
after reshaping it using shape. |
|
|
|
shape: tuple or list, length = 2 |
|
optional. if not given, X is reshaped to be square. |
|
|
|
sigma : double |
|
optional. sigma-parameter for the canny algorithm used for edge detection. the found edges are drawn as outlines. |
|
|
|
cmap : str |
|
optional. color map of choice |
|
|
|
normalize : bool |
|
optional. whether to normalize the heatmap to [-1 1] prior to colorization or not. |
|
|
|
Returns |
|
------- |
|
|
|
rgbimg : numpy.ndarray |
|
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N |
|
""" |
|
|
|
|
|
cmap = eval("matplotlib.cm.{}".format(cmap)) |
|
|
|
if normalize: |
|
R = R / np.max(np.abs(R)) |
|
R = (R + 1.0) / 2.0 |
|
|
|
R = enlarge_image(R, scaling) |
|
rgb = cmap(R.flatten())[..., 0:3].reshape([R.shape[0], R.shape[1], 3]) |
|
|
|
|
|
if not X is None: |
|
|
|
xdims = X.shape |
|
Rdims = R.shape |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return rgb |
|
|
|
|
|
def save_image(rgb_images, path, gap=2): |
|
""" |
|
Takes as input a list of rgb images, places them next to each other with a gap and writes out the result. |
|
|
|
Parameters |
|
---------- |
|
|
|
rgb_images : list , tuple, collection. such stuff |
|
each item in the collection is expected to be an rgb image of dimensions [H x _ x 3] |
|
where the width is variable |
|
|
|
path : str |
|
the output path of the assembled image |
|
|
|
gap : int |
|
optional. sets the width of a black area of pixels realized as an image shaped [H x gap x 3] in between the input images |
|
|
|
Returns |
|
------- |
|
|
|
image : numpy.ndarray |
|
the assembled image as written out to path |
|
""" |
|
|
|
sz = [] |
|
image = [] |
|
for i in range(len(rgb_images)): |
|
if not sz: |
|
sz = rgb_images[i].shape |
|
image = rgb_images[i] |
|
gap = np.zeros((sz[0], gap, sz[2])) |
|
continue |
|
if not sz[0] == rgb_images[i].shape[0] and sz[1] == rgb_images[i].shape[2]: |
|
print("image", i, "differs in size. unable to perform horizontal alignment") |
|
print("expected: Hx_xD = {0}x_x{1}".format(sz[0], sz[1])) |
|
print( |
|
"got : Hx_xD = {0}x_x{1}".format( |
|
rgb_images[i].shape[0], rgb_images[i].shape[1] |
|
) |
|
) |
|
print("skipping image\n") |
|
else: |
|
image = np.hstack((image, gap, rgb_images[i])) |
|
|
|
image *= 255 |
|
image = image.astype(np.uint8) |
|
|
|
print("saving image to ", path) |
|
skimage.io.imsave(path, image) |
|
return image |
|
|