sayakpaul's picture
sayakpaul HF staff
Duplicate from PaulHilders/CLIPGroundingExplainability
0ce9d2a
import torch
import CLIP.clip as clip
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
from captum.attr import visualization
import os
from CLIP.clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
_tokenizer = _Tokenizer()
#@title Control context expansion (number of attention layers to consider)
#@title Number of layers for image Transformer
start_layer = 11#@param {type:"number"}
#@title Number of layers for text Transformer
start_layer_text = 11#@param {type:"number"}
def interpret(image, texts, model, device):
batch_size = texts.shape[0]
images = image.repeat(batch_size, 1, 1, 1)
logits_per_image, logits_per_text = model(images, texts)
probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy()
index = [i for i in range(batch_size)]
one_hot = np.zeros((logits_per_image.shape[0], logits_per_image.shape[1]), dtype=np.float32)
one_hot[torch.arange(logits_per_image.shape[0]), index] = 1
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
one_hot = torch.sum(one_hot.to(device) * logits_per_image)
model.zero_grad()
image_attn_blocks = list(dict(model.visual.transformer.resblocks.named_children()).values())
num_tokens = image_attn_blocks[0].attn_probs.shape[-1]
R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device)
R = R.unsqueeze(0).expand(batch_size, num_tokens, num_tokens)
for i, blk in enumerate(image_attn_blocks):
if i < start_layer:
continue
grad = torch.autograd.grad(one_hot, [blk.attn_probs], retain_graph=True)[0].detach()
cam = blk.attn_probs.detach()
cam = cam.reshape(-1, cam.shape[-1], cam.shape[-1])
grad = grad.reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.reshape(batch_size, -1, cam.shape[-1], cam.shape[-1])
cam = cam.clamp(min=0).mean(dim=1)
R = R + torch.bmm(cam, R)
image_relevance = R[:, 0, 1:]
text_attn_blocks = list(dict(model.transformer.resblocks.named_children()).values())
num_tokens = text_attn_blocks[0].attn_probs.shape[-1]
R_text = torch.eye(num_tokens, num_tokens, dtype=text_attn_blocks[0].attn_probs.dtype).to(device)
R_text = R_text.unsqueeze(0).expand(batch_size, num_tokens, num_tokens)
for i, blk in enumerate(text_attn_blocks):
if i < start_layer_text:
continue
grad = torch.autograd.grad(one_hot, [blk.attn_probs], retain_graph=True)[0].detach()
cam = blk.attn_probs.detach()
cam = cam.reshape(-1, cam.shape[-1], cam.shape[-1])
grad = grad.reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.reshape(batch_size, -1, cam.shape[-1], cam.shape[-1])
cam = cam.clamp(min=0).mean(dim=1)
R_text = R_text + torch.bmm(cam, R_text)
text_relevance = R_text
return text_relevance, image_relevance
def show_image_relevance(image_relevance, image, orig_image, device, show=True):
# create heatmap from mask on image
def show_cam_on_image(img, mask):
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
return cam
# plt.axis('off')
# f, axarr = plt.subplots(1,2)
# axarr[0].imshow(orig_image)
if show:
fig, axs = plt.subplots(1, 2)
axs[0].imshow(orig_image);
axs[0].axis('off');
image_relevance = image_relevance.reshape(1, 1, 7, 7)
image_relevance = torch.nn.functional.interpolate(image_relevance, size=224, mode='bilinear')
image_relevance = image_relevance.reshape(224, 224).to(device).data.cpu().numpy()
image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
image = image[0].permute(1, 2, 0).data.cpu().numpy()
image = (image - image.min()) / (image.max() - image.min())
vis = show_cam_on_image(image, image_relevance)
vis = np.uint8(255 * vis)
vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR)
if show:
# axar[1].imshow(vis)
axs[1].imshow(vis);
axs[1].axis('off');
# plt.imshow(vis)
return image_relevance
def show_heatmap_on_text(text, text_encoding, R_text, show=True):
CLS_idx = text_encoding.argmax(dim=-1)
R_text = R_text[CLS_idx, 1:CLS_idx]
text_scores = R_text / R_text.sum()
text_scores = text_scores.flatten()
# print(text_scores)
text_tokens=_tokenizer.encode(text)
text_tokens_decoded=[_tokenizer.decode([a]) for a in text_tokens]
vis_data_records = [visualization.VisualizationDataRecord(text_scores,0,0,0,0,0,text_tokens_decoded,1)]
if show:
visualization.visualize_text(vis_data_records)
return text_scores, text_tokens_decoded
def show_img_heatmap(image_relevance, image, orig_image, device, show=True):
return show_image_relevance(image_relevance, image, orig_image, device, show=show)
def show_txt_heatmap(text, text_encoding, R_text, show=True):
return show_heatmap_on_text(text, text_encoding, R_text, show=show)
def load_dataset():
dataset_path = os.path.join('..', '..', 'dummy-data', '71226_segments' + '.pt')
device = "cuda" if torch.cuda.is_available() else "cpu"
data = torch.load(dataset_path, map_location=device)
return data
class color:
PURPLE = '\033[95m'
CYAN = '\033[96m'
DARKCYAN = '\033[36m'
BLUE = '\033[94m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
END = '\033[0m'