alkzar90 commited on
Commit
e741bd4
1 Parent(s): 7bc22ec

Add train a model section

Browse files
Files changed (1) hide show
  1. app.py +9 -0
app.py CHANGED
@@ -35,6 +35,15 @@ ax.scatter(X[:,1], y, c='#e76254' ,edgecolors='firebrick')
35
 
36
  st.pyplot(fig)
37
 
 
 
 
 
 
 
 
 
 
38
  # Fitting by the respective cost_function
39
  if cost_function == 'RMSE-Loss':
40
  st.write('You selected the RMSE loss function.')
 
35
 
36
  st.pyplot(fig)
37
 
38
+ st.subheader('Train a model')
39
+
40
+ st.markdown('*\"A Gradient Based Method is a method/algorithm that finds the minima of a function, assuming that one can easily compute the gradient of that function. It assumes that the function is continuous and differentiable almost everywhere (it need not be differentiable everywhere).\"* [(Yann LeCun, Deep learning course)](https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-1/#Parametrised-models)')
41
+
42
+ st.markdown('Using gradient descent we find the minima of the loss adjusting the weights in each step given the following formula:')
43
+
44
+ st.latex(r'''\bf{w}\leftarrow \bf{w}-\eta \frac{\partial\ell(\bf{X},\bf{y}, \bf{w})}{\partial \bf{w}}''')
45
+
46
+
47
  # Fitting by the respective cost_function
48
  if cost_function == 'RMSE-Loss':
49
  st.write('You selected the RMSE loss function.')