Spaces:
Sleeping
Sleeping
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import asynccontextmanager
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel, ValidationError
|
4 |
+
from fastapi.encoders import jsonable_encoder
|
5 |
+
|
6 |
+
# TEXT PREPROCESSING
|
7 |
+
# --------------------------------------------------------------------
|
8 |
+
import re
|
9 |
+
import string
|
10 |
+
import nltk
|
11 |
+
nltk.download('punkt')
|
12 |
+
nltk.download('wordnet')
|
13 |
+
nltk.download('omw-1.4')
|
14 |
+
from nltk.stem import WordNetLemmatizer
|
15 |
+
|
16 |
+
# Function to remove URLs from text
|
17 |
+
def remove_urls(text):
|
18 |
+
return re.sub(r'http[s]?://\S+', '', text)
|
19 |
+
|
20 |
+
# Function to remove punctuations from text
|
21 |
+
def remove_punctuation(text):
|
22 |
+
regular_punct = string.punctuation
|
23 |
+
return str(re.sub(r'['+regular_punct+']', '', str(text)))
|
24 |
+
|
25 |
+
# Function to convert the text into lower case
|
26 |
+
def lower_case(text):
|
27 |
+
return text.lower()
|
28 |
+
|
29 |
+
# Function to lemmatize text
|
30 |
+
def lemmatize(text):
|
31 |
+
wordnet_lemmatizer = WordNetLemmatizer()
|
32 |
+
|
33 |
+
tokens = nltk.word_tokenize(text)
|
34 |
+
lemma_txt = ''
|
35 |
+
for w in tokens:
|
36 |
+
lemma_txt = lemma_txt + wordnet_lemmatizer.lemmatize(w) + ' '
|
37 |
+
|
38 |
+
return lemma_txt
|
39 |
+
|
40 |
+
def preprocess_text(text):
|
41 |
+
# Preprocess the input text
|
42 |
+
text = remove_urls(text)
|
43 |
+
text = remove_punctuation(text)
|
44 |
+
text = lower_case(text)
|
45 |
+
text = lemmatize(text)
|
46 |
+
return text
|
47 |
+
|
48 |
+
# Load the model using FastAPI lifespan event so that the model is loaded at the beginning for efficiency
|
49 |
+
@asynccontextmanager
|
50 |
+
async def lifespan(app: FastAPI):
|
51 |
+
# Load the model from HuggingFace transformers library
|
52 |
+
from transformers import pipeline
|
53 |
+
global sentiment_task
|
54 |
+
sentiment_task = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
55 |
+
yield
|
56 |
+
# Clean up the model and release the resources
|
57 |
+
del sentiment_task
|
58 |
+
|
59 |
+
# Initialize the FastAPI app
|
60 |
+
app = FastAPI(lifespan=lifespan)
|
61 |
+
|
62 |
+
# Define the input data model
|
63 |
+
class TextInput(BaseModel):
|
64 |
+
text: str
|
65 |
+
|
66 |
+
# Define the welcome endpoint
|
67 |
+
@app.get('/')
|
68 |
+
async def welcome():
|
69 |
+
return "Welcome to our Text Classification API"
|
70 |
+
|
71 |
+
# Validate input text length
|
72 |
+
MAX_TEXT_LENGTH = 1000
|
73 |
+
|
74 |
+
# Define the sentiment analysis endpoint
|
75 |
+
@app.post('/analyze/{text}')
|
76 |
+
async def classify_text(text_input:TextInput):
|
77 |
+
try:
|
78 |
+
# Convert input data to JSON serializable dictionary
|
79 |
+
text_input_dict = jsonable_encoder(text_input)
|
80 |
+
# Validate input data using Pydantic model
|
81 |
+
text_data = TextInput(**text_input_dict) # Convert to Pydantic model
|
82 |
+
|
83 |
+
# Validate input text length
|
84 |
+
if len(text_input.text) > MAX_TEXT_LENGTH:
|
85 |
+
raise HTTPException(status_code=400, detail="Text length exceeds maximum allowed length")
|
86 |
+
elif len(text_input.text) == 0:
|
87 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
88 |
+
except ValidationError as e:
|
89 |
+
# Handle validation error
|
90 |
+
raise HTTPException(status_code=422, detail=str(e))
|
91 |
+
|
92 |
+
try:
|
93 |
+
# Perform text classification
|
94 |
+
return sentiment_task(preprocess_text(text_input.text))
|
95 |
+
except ValueError as ve:
|
96 |
+
# Handle value error
|
97 |
+
raise HTTPException(status_code=400, detail=str(ve))
|
98 |
+
except Exception as e:
|
99 |
+
# Handle other server errors
|
100 |
+
raise HTTPException(status_code=500, detail=str(e))
|